
Quantum Algorithms for Finite-horizon Markov Decision Processes

Bin Luo 1 Yuwen Huang 1 Jonathan Allcock 2 Xiaojun Lin 1 Shengyu Zhang 2 John C.S. Lui 1

Abstract
In this work, we design quantum algorithms that
are more efficient than classical algorithms to
solve time-dependent and finite-horizon Markov
Decision Processes (MDPs) in two distinct set-
tings: (1) In the exact dynamics setting, where
the agent has full knowledge of the environment’s
dynamics (i.e., transition probabilities), we prove
that our Quantum Value Iteration (QVI) algo-
rithm QVI-1 achieves a quadratic speedup in the
size of the action space (𝐴) compared with the
classical value iteration algorithm for computing
the optimal policy (𝜋∗) and the optimal V-value
function (𝑉 ∗

0). Furthermore, our algorithm QVI-
2 provides an additional speedup in the size of
the state space (𝑆) when obtaining near-optimal
policies and V-value functions. Besides, our clas-
sical lower bounds show that QVI-1 and QVI-2
achieve a dependence on 𝑆 and 𝐴 that is provably
inaccessible to any classical algorithm. (2) In the
generative model setting, where samples from the
environment are accessible in quantum superpo-
sition, we prove that our algorithms QVI-3 and
QVI-4 achieve improvements in sample complex-
ity over the state-of-the-art (SOTA) classical al-
gorithm in terms of 𝐴, estimation error (𝜖), and
time horizon (𝐻). More importantly, we prove
quantum lower bounds to show that QVI-3 and
QVI-4 are asymptotically optimal, up to logarith-
mic factors, assuming a constant time horizon.

1. Introduction
Markov Decision Processes (MDPs) provide a mathemati-
cal framework for modeling decision-making problems in
uncertain environments. They are an important framework
to model discrete-time stochastic control and reinforcement
learning (RL) (Puterman, 2014; Agarwal et al., 2019). MDPs

1The Chinese University of Hong Kong, Hong Kong, China
2Tencent Quantum Laboratory, China. Correspondence to: Yuwen
Huang <yuwen.huang@link.cuhk.edu.hk>.
Proceedings of the 42𝑛𝑑 International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

have been applied in fields such as networks, robotics, and
operations research (Alsheikh et al., 2015; Matignon et al.,
2012). Despite their wide applicability, MDPs often face
significant computational challenges in practice. A key is-
sue arises when the number of possible states or actions in
the system becomes very large. In particular, this "curse
of dimensionality" makes solving MDPs computationally
infeasible in many practical scenarios (Powell, 2007).
Quantum computing is a new computing paradigm that har-
nesses the laws of quantum mechanics. For certain classes
of problems, such as unstructured search (Grover, 1996),
prime number factoring (Shor, 1994), optimization (Sidford
& Zhang, 2023; Jordan, 2005; Liu et al., 2024) and online
learning (He et al., 2024; 2022; Wan et al., 2023), quantum
computing demonstrates significant speedups over classi-
cal computing. Recent advancements in quantum hardware
(Arute et al., 2019; AI et al., 2024) indicate that practical
quantum computers can be a reality in the near future.
Given the importance of MDPs and the advancement in quan-
tum computing, researchers have explored various quantum
algorithms to reduce the time complexity of solving MDPs.
In the stochastic control domain, (Naguleswaran & White,
2005) suggested two quantum techniques that can potentially
be used to accelerate classical algorithms for finite-horizon
MDPs (Puterman, 2014). However, this work only focused
on problem formulation and did not provide a concrete quan-
tum algorithm for finite-horizon MDPs with performance
guarantee. (Naguleswaran et al., 2006) applied quantum
walk (Magniez et al., 2007) to efficiently solve a specific
class of MDPs, namely deterministic shortest path prob-
lems. However, the quantum algorithm and analysis there
cannot be applied to general finite-horizon MDPs. For RL,
researchers proposed to replace subroutines of existing RL
frameworks by quantum algorithms. For example, (Wiede-
mann et al., 2022) proposed to use a quantum Monte Carlo
(MC) (Montanaro, 2015) to replace the classical MC method
on policy evaluation. However, their algorithm is inefficient
as its quantum sample complexity is exponential with re-
spect to 𝑆 in both time-dependent and time-independent set-
tings for obtaining near-optimal policies. Improved sample-
complexity results that do not increase exponentially in 𝑆
have been obtained for infinite-horizon MDPs. For example,
(Cherrat et al., 2023) utilized a quantum linear system solver
(Chakraborty et al., 2019) to approximate Q-values during

1

Quantum Algorithms for Finite-horizon Markov Decision Processes

the policy evaluation. (Wang et al., 2021) proposed nearly
minimax optimal quantum algorithms for infinite-horizon
MDPs by leveraging quantum mean estimation (Montanaro,
2015) and quantum maximum searching (Durr & Hoyer,
1999). Besides, (Cornelissen, 2018) applied quantum gra-
dient estimation (Gilyén et al., 2019) in policy improve-
ment. However, these algorithms are only tailored to infinite-
horizon problems with a time-invariant value function, thus
preventing their use in finite-horizon and time-dependent
scenarios where the value functions depend on time.
Thus, one open question is, can one design quantum algo-
rithms that are more efficient than classical algorithms in
obtaining the optimal or 𝜖-optimal policy, V-value and Q-
value functions for “finite-horizon” and “time-dependent”
MDPs? We address this open question in both the exact
dynamics setting and the generative model setting. Our
contributions are as follows:

• In the exact dynamics setting (Section 3), we propose
a Quantum Value Iteration (QVI) algorithm QVI-1,
that computes the optimal policy and V-value func-
tion with a quadratic speedup in 𝐴 compared with the
classical value iteration algorithm. Additionally, QVI-
2 achieves a further speedup in 𝑆 for obtaining near-
optimal policies and V-value functions, enabled by our
novel quantum subroutine, quantum mean estimation
with binary oracles (QMEBO), for mean estimation of
arbitrary bounded functions. Besides, we also derive
new classical lower bounds for computing near-optimal
policies and V-value functions. A summary of these
results is provided in Table 1.

• In the generative model setting (Section 4), we propose
two quantum algorithms, QVI-3 and QVI-4, designed
to efficiently compute 𝜖-optimal policies and value func-
tions. Compared with SOTA classical algorithms for
time-dependent and finite-horizon MDPs, both QVI-3
and QVI-4 achieves speedups in𝐻 , and 𝜖, with QVI-3
additionally achieving a quadratic speedups in 𝐴.

• Assuming access to a quantum generative oracle for
time-dependent and finite-horizon MDPs, we establish
quantum lower bounds for obtaining near-optimal poli-
cies, V-value functions, and Q-value functions. Our
results demonstrate that QVI-3 and QVI-4 are asymp-
totically optimal, up to log factors, provided 𝐻 is a
constant. Further, our results also lead to a new lower
bound for obtaining Q-values in the classical setting.
A summary of the upper and lower bounds in the gen-
erative model setting is provided in Table 2.

2. Preliminaries
Define notations: For an arbitrary positive integer 𝑛, we
define [𝑛] as the set {0, ..., 𝑛 − 1}. For any finite set 𝑋 and
any vector 𝑓 ∈ 𝑌 𝑋 , we denote the element of 𝑓 at entry 𝑥 by

𝑓 (𝑥). For any 𝑓 ∈ ℝ𝑋 , the operations √𝑓 , |𝑓 |, and 𝑓 2 are
applied component-wise. Given two vectors 𝑓1, 𝑓2 ∈ ℝ𝑋 ,
we define max{𝑓1, 𝑓2} as their element-wise maximum, and
write 𝑓1 ≤ 𝑓2 to indicate component-wise inequality. The
bold symbols 𝟎 and 𝟏 represent vectors of all zeros and
ones, respectively, and a scalar 𝑥 in an equation with vectors
should be interpreted as 𝑥 ⋅ 𝟏. We usually identify a function
𝑓 ∶ 𝑋 → 𝑌 as a vector 𝑓 ∈ 𝑌 𝑋 .
MDP Preliminaries: We study time-dependent and finite-
horizon MDPs in two settings: (a) the exact dynamics setting
(Section 3) and (b) the generative model setting (Section 4).
In both settings, the MDP has a finite and discrete state space
 and action space . In each time step ℎ ∈ [𝐻], an agent
need to decide which action 𝑎 ∈ to take for each state
𝑠 ∈ . After taking the action 𝑎 at the state 𝑠 in the time
step ℎ ∈ [𝐻], the agent obtains a reward 𝑟ℎ(𝑠, 𝑎) ∈ [0, 1]
and transitions to the next state 𝑠′ ∈ with probability
𝑃ℎ(𝑠′|𝑠, 𝑎). We define a finite-horizon and time-dependent
MDP as a 5-tuple = (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻). We

define 𝑆 ∶= || and 𝐴 ∶= ||, which are the cardinalities
of and respectively. A policy 𝜋 is a mapping from
 × [𝐻] to , where 𝜋(𝑠, ℎ) specifies the action that the
agent should take in the state 𝑠 at the time step ℎ. The
policy space is defined as Π ∶= ×[𝐻]. In MDPs, the
objective of the agent is to find a policy 𝜋 that maximizes the
expected cumulative reward over 𝐻 time horizon. This can
be written as maximizing the V-value function, 𝑉 𝜋

ℎ ∶ →
ℝ, at each time step ℎ. Specifically, the V-value function
at time ℎ for an initial state 𝑠 under a policy 𝜋 is defined as
𝑉 𝜋
ℎ (𝑠) ∶= 𝔼

[
∑𝐻−1
𝑡=ℎ 𝑟𝑡(𝑠𝑡, 𝑎𝑡)|𝜋, 𝑠ℎ = 𝑠

]

, where 𝑎𝑡 = 𝜋(𝑠𝑡, 𝑡).Similarly, the Q-value function 𝑄𝜋ℎ ∶ × → ℝ is defined
as 𝑄𝜋ℎ(𝑠, 𝑎) ∶= 𝔼

[
∑𝐻−1
𝑡=ℎ 𝑟𝑡(𝑠𝑡, 𝑎𝑡)

|

|

|

𝜋, 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎
]

.

For a policy 𝜋, we define 𝑃 𝜋ℎ ∈ ℝ× to be the matrix
with entries 𝑃 𝜋ℎ

(

(𝑠, 𝑎), (𝑠′, 𝑎′)
)

= 𝑃ℎ(𝑠′|𝑠, 𝑎) if 𝑎′ = 𝜋(𝑠′),
and 0 otherwise. For any 𝑄 ∈ ℝ×, we let 𝑃 𝜋ℎ𝑄 ∈ ℝ×

be defined as (𝑃 𝜋ℎ𝑄)(𝑠, 𝑎) =
∑

𝑠′∈ 𝑃ℎ(𝑠′|𝑠, 𝑎)𝑄
(

𝑠′, 𝜋(𝑠′)
).

With a slight abuse of notation, we define 𝑃ℎ ∈ ℝ×

as the matrix with entries 𝑃ℎ
(

(𝑠, 𝑎), 𝑠′
)

= 𝑃ℎ(𝑠′|𝑠, 𝑎) for
any ℎ ∈ [𝐻]. For any fixed 𝑠 ∈ , 𝑎 ∈ and ℎ ∈
[𝐻], we define 𝑃ℎ|𝑠,𝑎 ∈ ℝ to be the vector with en-
tries 𝑃ℎ|𝑠,𝑎(𝑠′) = 𝑃ℎ(𝑠′|𝑠, 𝑎). Therefore, we can express
𝔼[𝑓 (𝑠′)|𝑠′ ∼ 𝑃ℎ|𝑠,𝑎] = 𝑃 T

ℎ|𝑠,𝑎𝑓 for any 𝑓 ∈ ℝ .
For any vector 𝑣 ∈ ℝ , we define 𝜎2ℎ(𝑣) ∈ ℝ× as a
vector satisfying [𝜎2ℎ(𝑣)](𝑠, 𝑎) ∶= Var[𝑣(𝑠′)|𝑠′ ∼ 𝑃ℎ(⋅|𝑠, 𝑎)]for any ℎ ∈ [𝐻]. In the vector notation, it can be written as
𝜎2ℎ(𝑣) = 𝑃ℎ𝑣2 − (𝑃ℎ𝑣)2. We also define 𝜎ℎ(𝑣) =

√

𝜎2ℎ(𝑣).
We define 𝑉 (𝑄) ∈ ℝ as [𝑉 (𝑄)]𝑠 = max𝑎∈{𝑄(𝑠, 𝑎)}and 𝜋(𝑄) ∈ as [𝜋(𝑄)]𝑠 = argmax𝑎∈{𝑄(𝑠, 𝑎)} for any
vector 𝑄 ∈ ℝ×.

2

Quantum Algorithms for Finite-horizon Markov Decision Processes

Goal: Classical query complexity Quantum query complexity
Upper bound Lower bound Upper bound

Optimal 𝜋∗, 𝑉 ∗
0 𝑆2𝐴𝐻 𝑆2𝐴 [Theorem 3.2] 𝑆2

√

𝐴𝐻 [Theorem 3.6]
𝜖-accurate estimate
of 𝜋∗ and {𝑉 ∗

ℎ }
𝐻−1
ℎ=0

𝑆2𝐴𝐻 𝑆2𝐴 [Theorem 3.2] 𝑆1.5
√

𝐴𝐻3

𝜖 [Theorem 3.9]

Table 1. Classical and quantum query complexities for solving time-dependent and finite-horizon MDPs in the exact dynamics setting. All
quantum upper bounds are �̃�(⋅), assuming a constant failure probability 𝛿. The range of error term 𝜖 is (0,𝐻]. The classical upper bounds
are 𝑂(⋅), derived from the value iteration algorithm in (Puterman, 2014). The classical lower bounds are Ω(⋅), which holds for 𝜖 ∈ 𝑂(𝐻).

Goal: obtain
an 𝜖-accurate
estimate of

Classical sample complexity Quantum sample complexity

Upper bound Lower bound Upper bound Lower bound

{𝑄∗
ℎ}
𝐻−1
ℎ=0

𝑆𝐴𝐻4

𝜖2
𝑆𝐴𝐻3

𝜖2 [Theorem 4.7] 𝑆𝐴𝐻2.5

𝜖 [Theorem 4.6] 𝑆𝐴𝐻1.5

𝜖 [Theorem 4.7]

𝜋∗, {𝑉 ∗
ℎ }

𝐻−1
ℎ=0

𝑆𝐴𝐻4

𝜖2
𝑆𝐴𝐻3

𝜖2 [Theorem 4.7]
𝑆𝐴𝐻2.5

𝜖 [Theorem 4.6]
𝑆
√

𝐴𝐻1.5

𝜖 [Theorem 4.7]
𝑆
√

𝐴𝐻3

𝜖 [Theorem 4.4]
Table 2. Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative model setting.
All bounds assume a constant maximum failure probability 𝛿. All upper bounds are �̃�(⋅), which requires 𝜖 ∈ 𝑂(1∕

√

𝐻) for [Theorem
4.6] and 𝜖 ∈ (0,𝐻] for [Theorem 4.4]. All lower bounds are Ω̃(⋅), which holds for 𝜖 ∈ (0, 1∕2). The classical upper bounds for all goals
were shown in (Li et al., 2020). The classical lower bound for 𝜋∗ and {𝑉 ∗

ℎ }
𝐻−1
ℎ=0 was shown in (Sidford et al., 2018).

Below, we provide formal definitions for some important
concepts in the finite-horizon MDP .
Definition 2.1 (Value operator associated with a policy). For
any policy 𝜋 ∈ Π, let ℎ

𝜋 (⋅) be the value operator associated
with 𝜋 such that, for all 𝑢 ∈ ℝ , ℎ ∈ [𝐻] and 𝑠 ∈ ,
[ℎ
𝜋 (𝑢)]𝑠 ∶= 𝑟

(

𝑠, 𝜋(𝑠, ℎ)
)

+ 𝑃 T
ℎ|𝑠,𝜋(𝑠,ℎ)𝑢. We let {𝑉 𝜋

ℎ }
𝐻−1
ℎ=0denote the V-value functions of policy 𝜋, which satisfies

 ℎ
𝜋 (𝑉

𝜋
ℎ+1) = 𝑉 𝜋

ℎ for all ℎ ∈ [𝐻].
Definition 2.2 (Optimal value and policy). Define the opti-
mal value of an initial state 𝑠 ∈ at each time step ℎ ∈ [𝐻]
of the finite-horizon MDP as 𝑉 ∗

ℎ (𝑠) ∶= max𝜋∈Π 𝑉 𝜋
ℎ (𝑠).A policy 𝜋 is said to be an optimal policy 𝜋∗ if 𝑉 𝜋

0 = 𝑉 ∗
0 .

Similarly, we can also define the optimal value of an ini-
tial pair of (𝑠, 𝑎) ∈ × at each time step ℎ ∈ [𝐻] as
𝑄∗
ℎ(𝑠, 𝑎) ∶= max𝜋∈Π𝑄𝜋ℎ(𝑠, 𝑎).

Definition 2.3 (𝜖-optimal value function and policy). We
say that V-value functions {𝑉ℎ}𝐻−1

ℎ=0 are 𝜖-optimal if
‖

‖

‖

𝑉 ∗
ℎ − 𝑉ℎ

‖

‖

‖∞
≤ 𝜖 for all ℎ ∈ [𝐻] and a policy 𝜋 ∈ Π

is 𝜖-optimal if ‖‖
‖

𝑉 ∗
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
≤ 𝜖 for all ℎ ∈ [𝐻], which

implies the V-value functions of 𝜋 are 𝜖-optimal. Similarly,
we say that Q-value functions {𝑄ℎ}𝐻−1

ℎ=0 are 𝜖-optimal if
‖

‖

‖

𝑄∗
ℎ −𝑄ℎ

‖

‖

‖∞
≤ 𝜖 for all ℎ ∈ [𝐻].

Quantum Preliminaries: Before introducing our quantum
algorithms, a brief overview of Dirac notation (Nielsen &
Chuang, 2010) is given to ensure clarity. In Dirac notation,
vectors 𝑣 in a complex vector space ℂ𝑛 are represented as

|𝑣⟩. The symbol |𝑖⟩, where 𝑖 ∈ [𝑛], denotes the 𝑖 + 1-th
standard basis vector, with |0⟩ typically reserved for the
first standard basis vector. In this paper, real numbers are
encoded in the computational basis using a fixed-point bi-
nary representation with precision 2−𝑝. Specifically, a real
number 𝑘 is encoded as |Bi[𝑘]⟩ = |𝑘1… 𝑘𝑞⟩ ∈ ℂ2𝑞 , where
𝑘1… 𝑘𝑞 = 𝑘1… 𝑘𝑞−𝑝.𝑘𝑞−𝑝+1… 𝑘𝑞 is the binary string of 𝑘.
We assume that 𝑞 and 𝑝 are sufficiently large so that there is
no overflow in storing real numbers.
We now define a quantum oracle for arbitrary functions and
vectors, which is often referred to as binary oracle.
Definition 2.4 (Quantum oracle for functions and vectors).
Let Ω be a finite set of size 𝑁 and 𝑓 ∈ ℝΩ. A quantum
oracle encoding 𝑓 is a unitary operator 𝐵𝑓 ∶ ℂ𝑁 ⊗ ℂ2𝑞 →

ℂ𝑁 ⊗ ℂ2𝑞 such that 𝐵𝑓 ∶ |𝑖⟩ |0⟩ ↦ |𝑖⟩ |Bi[𝑓 (𝑖)]⟩ for all
𝑖 ∈ [𝑁], where Bi[𝑓 (𝑖)] is the binary representation of 𝑓 (𝑖)
with precision 2−𝑝.
3. Exact Dynamics Setting
In this setting, it is assumed that the environment’s dynamics
are fully known, i.e., the transition probability matrix 𝑃ℎ at
each time step ℎ is explicitly provided for the entire state-
action space. To formalize this assumption, we introduce the
classical oracle for finite-horizon MDPs 𝑂 in Definition
3.1. Given this classical oracle, the classical value iteration
algorithm (Algorithm 6) can obtain an optimal policy 𝜋∗
and optimal value 𝑉 ∗

0 (𝑠) for any initial state 𝑠 ∈ with

3

Quantum Algorithms for Finite-horizon Markov Decision Processes

𝑂(𝑆2𝐴𝐻) queries to the oracle 𝑂 (Bellman, 1958).
Definition 3.1 (Classical oracle of an MDP). We define a
classical oracle 𝑂 ∶ × × [𝐻] × → [0, 1] × [0, 1]
for a time-dependent and finite-horizon MDP satisfying
𝑂 ∶ (𝑠, 𝑎, ℎ, 𝑠′) ↦

(

𝑟ℎ(𝑠, 𝑎), 𝑃ℎ|𝑠,𝑎(𝑠′)
)

.
To understand the limits of classical algorithms under this
setting, we establish a lower bound on query complexity
for computing near-optimal policies and V-value functions.
This results adapts techniques developed for infinite-horizon
MDPs in (Chen & Wang, 2017) to the finite-horizon case.
The proof of Theorem 3.2 is presented in Appendix A.2.
Theorem 3.2 (Classical lower bounds). Let and be
finite sets of states and actions. Let 𝐻 ≥ 2 be a positive
integer and 𝜖 ∈ (0, 𝐻−1

4) be an error parameter. We con-
sider the following time-dependent and finite-horizon MDP
 = (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻), where 𝑟ℎ ∈ [0, 1]×

for all ℎ ∈ [𝐻]. Given access to the classical oracle 𝑂,
any algorithm , which takes as an input and outputs 𝜖-
approximations of {𝑉 ∗

ℎ }
𝐻−1
ℎ=0 or 𝜋∗ with probability at least

0.9, must require at least Ω(𝑆2𝐴) queries to 𝑂 on the
worst case of input .

3.1. Speedup on 𝐴

Having established the classical baseline, we now turn to
investigating whether quantum algorithms can offer improve-
ments, particularly in the dependence on the action space
size 𝐴. To have a fair comparison on the time complexity
between a classical algorithm and a quantum algorithm, we
first define the quantum analog of the classical oracle 𝑂.
Definition 3.3 (Quantum oracle of an MDP). A quantum
oracle of an MDP is a unitary operator 𝑂 ∶ ℂ𝑆 ⊗
ℂ𝐴⊗ℂ𝐻 ⊗ℂ𝑆 ⊗ℂ2𝑞 ⊗ℂ2𝑞 → ℂ𝑆 ⊗ℂ𝐴⊗ℂ𝐻 ⊗ℂ𝑆 ⊗
ℂ2𝑞 ⊗ ℂ2𝑞 such that

𝑂 ∶ |𝑠⟩ |𝑎⟩ |ℎ⟩ |𝑠′⟩ |0⟩ |0⟩
↦ |𝑠⟩ |𝑎⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ , (1)

for all (𝑠, 𝑎, ℎ, 𝑠′) ∈ × × [𝐻] × , where Bi[𝑟ℎ(𝑠, 𝑎)]and Bi[𝑃ℎ|𝑠,𝑎(𝑠′)] denote the binary representation of 𝑟ℎ(𝑠, 𝑎)and 𝑃ℎ|𝑠,𝑎(𝑠′) with precision 2−𝑝.
We define the number of queries made to the quantum oracle
𝑂 or classical oracle 𝑂 as the quantum or classical
query complexity, respectively. Comparing quantum and
classical time complexities can be fairly achieved by examin-
ing their respective query complexities, because implement-
ing 𝑂 has comparable overhead as 𝑂. Specifically,
given a Boolean circuit of 𝑂 with 𝑁 logic gates, it can be
converted into a quantum circuit of 𝑂 with 𝑂(𝑁) quan-
tum gates. This conversion can be efficiently achieved by
simple conversion rules at the logic gate level (Nielsen &
Chuang, 2010). Therefore, 𝑂 and 𝑂 have comparable
costs at the elementary gate level. Then, if the classical
oracle 𝑂 can be called in constant time, the quantum or-
acle 𝑂 can be called in constant time as well. Under

Algorithm 1 Quantum Value Iteration QVI-1(, 𝛿)
1: Require: MDP , quantum oracle 𝑂, maximum

failure probability 𝛿 ∈ (0, 1).
2: Initialize: 𝜁 ← 𝛿∕(𝑆𝐻), 𝑉𝐻 ← 𝟎.
3: for ℎ ∶= 𝐻 − 1,… , 0 do
4: create a quantum oracle 𝐵𝑉ℎ+1 for vector 𝑉ℎ+1 ∈ ℝ

5: ∀𝑠 ∈ : create a quantum oracle 𝐵�̂�ℎ,𝑠 encoding
vector �̂�ℎ,𝑠 ∈ ℝ with 𝑂 and 𝐵𝑉ℎ+1 satisfying
�̂�ℎ,𝑠(𝑎) ← 𝑟ℎ(𝑠, 𝑎) + 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1
6: ∀𝑠 ∈ : �̂�(𝑠, ℎ) ← QMS𝜁{�̂�ℎ,𝑠(𝑎) ∶ 𝑎 ∈ }
7: ∀𝑠 ∈ : 𝑉ℎ(𝑠) ← �̂�ℎ,𝑠

(

�̂�(𝑠, ℎ)
)

8: end for
9: Return: �̂�, 𝑉0

this assumption, query complexity directly reflects the time
complexity for both the classical and quantum algorithms.
With the quantum oracle 𝑂, our objective is to design
quantum algorithms that can compute 𝜋∗ and 𝑉 ∗

0 (𝑠) for all
𝑠 ∈ with probability at least 1 − 𝛿, while minimizing the
total number of queries to 𝑂.
We first introduce an existing quantum subroutine, quan-
tum maximum searching algorithm (Durr & Hoyer, 1999),
which can efficiently find the maximum of a list of unsorted
𝑁 ∈ ℤ+ numbers using only 𝑂(√𝑁) queries to that list. In
contrast, the best-possible classical algorithm must examine
all 𝑁 elements in the worst case to find the maximum.
Theorem 3.4 (Quantum maximum searching (Durr & Hoyer,
1999)). Let 𝐵𝑓 be a quantum oracle encoding a vector 𝑓 ∈
ℝ𝑁 , 𝑁 ∈ ℤ+. There exists a quantum maximum searching
algorithm, QMS, which, for any 𝛿 > 0, can identify an index
𝑖 such that 𝑓 (𝑖) is the maximum value in 𝑓 , with a success
probability of at least 1 − 𝛿. The algorithm requires at most
𝑐
√

𝑁 log(1∕𝛿) queries to 𝐵𝑓 , where 𝑐 > 0 is a constant.

We use QMS𝛿{𝑓 (𝑖) ∶ 𝑖 ∈ [𝑁]} to denote the process of
finding the index of the maximum value of a vector 𝑓 us-
ing QMS, with a success probability at least 1 − 𝛿. Note
that the classical value iteration algorithm needs to take the
maximum over the whole action space in the Bellman recur-
sion to obtain the estimates of optimal V-value function 𝑉 ∗

ℎand optimal action 𝜋∗(𝑠, ℎ) for state 𝑠 at time stage ℎ. We
incorporate QMS in this step to reduce the query complex-
ity from 𝑂(𝐴) to 𝑂(√𝐴). Now, we propose our quantum
value iteration algorithm QVI-1 in Algorithm 1. In order to
use QMS correctly, one needs to suitably encode the vector
𝑉ℎ+1 and �̂�ℎ,𝑠 with the binary oracles. In summary, QVI-1
returns an optimal policy and optimal values (Theorem 3.5)
but only requires �̃�(𝑆2

√

𝐴𝐻) queries to the quantum oracle
𝑂 (Theorem 3.6). The proof of Theorems 3.5 and 3.6
can be found in Appendix A.3, where we also analyze the
cost of the qubit resources of QVI-1.

4

Quantum Algorithms for Finite-horizon Markov Decision Processes

Theorem 3.5 (Correctness of QVI-1). The outputs �̂� and 𝑉0
satisfy that �̂� = 𝜋∗ and 𝑉0 = 𝑉 ∗

0 with a success probability
at least 1 − 𝛿.

Theorem 3.6 (Complexity of QVI-1). The quantum query
complexity of QVI-1 in terms of the quantum oracle 𝑂

is 𝑂
(

𝑆2
√

𝐴𝐻 log(𝑆𝐻∕𝛿)
)

.

3.2. Speedup on 𝑆

Since QVI-1 achieves a speedup in the action space size𝐴, it
is advantageous for problems with a large action space, such
as natural language processing, where each text in a large
dictionary corresponds to a distinct action (Feng et al., 2024).
However, in problems modeled by numerous variables, such
as Chess or Go, where each position in a vast board is rep-
resented as a state, the state space can be much larger than
the action space and time horizon (Bellman, 1962). In such
scenarios, QVI-1 may not be suitable due to its complexity
of 𝑂(𝑆2). This complexity arises for two reasons: (1) one
needs to update𝑂(𝑆)Q-value functions at each time step; (2)
computing the “precise mean” of the V-value function from
the last time step needs 𝑂(𝑆) queries to the oracle 𝑂when updating each Q-value function. Note that for obtain-
ing an “𝜖-estimation of the mean” of 𝑛 Boolean variables,
quantum algorithms only need Θ(min{𝜖−1, 𝑛}) queries to a
binary oracle (Nayak & Wu, 1999; Beals et al., 2001). This
suggests that a quantum speedup in 𝑆 may be achievable if
one is satisfied with a near-optimal policy. Therefore, next
we investigate whether there exists a quantum algorithm that
can obtain 𝜖-optimal policies and V-value functions for an
MDP but only requires �̃�

(

𝑆𝑐poly(
√

𝐴,𝐻, 𝜖−1)
)

queries
to 𝑂, where 0 < 𝑐 < 2.

To achieve this optimization goal, we propose QVI-2 in
Algorithm 2, where the quantum subroutine QMEBO, as
used in the fifth step, is defined in Algorithm 3. The main
difference between QVI-1 and QVI-2 is that we compute
an estimate of the expectation of 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 rather than its
precise value in each time step ℎ in QVI-2. Since the oracle
𝑂 that encodes the probability distribution 𝑃ℎ|𝑠,𝑎 is a
binary oracle, we cannot directly apply the existing quan-
tum mean estimation algorithms (Montanaro, 2015), which
require an oracle that encodes the probability distribution in
the amplitude (See Theorem 4.2). Hence, we design a new
quantum subroutine in Algorithm 3, denoted as quantum
mean estimation with binary oracles (QMEBO).
Theorem 3.7 (Quantum mean estimation with binary ora-
cles). Let Ω be a finite set with cardinality 𝑁 , 𝑝 = (𝑝𝑥)𝑥∈Ω
a discrete probability distribution over Ω, and 𝑓 ∶ Ω → ℝ
a function. Suppose we have access to a binary oracle 𝐵𝑝
encoding the probability distribution 𝑝 and a binary ora-
cle 𝐵𝑓 encoding the function 𝑓 . If the function 𝑓 satisfies
𝑓 (𝑥) ∈ [0, 1] for all 𝑥 ∈ Ω, then the algorithm QMEBO
requires 𝑂

(

(
√

𝑁
𝜖 +

√

𝑁
𝜖) log(1∕𝛿)

)

queries to 𝐵𝑝 and 𝐵𝑓

Algorithm 2 Quantum Value Iteration QVI-2(, 𝜖, 𝛿)
1: Require: MDP , quantum oracle 𝑂, maximum

error 𝜖 ∈ (0,𝐻], failure probability 𝛿 ∈ (0, 1).
2: Initialize: 𝜁 ← 𝛿∕

(

4𝑐𝑆𝐴1.5𝐻 log(1∕𝛿)
), 𝑉𝐻 ← 𝟎.

3: for ℎ ∶= 𝐻 − 1,… , 0 do
4: create a quantum oracle 𝐵𝑉ℎ+1 encoding 𝑉ℎ+1 ∈

[0, 1] defined by 𝑉ℎ+1 ← 𝑉ℎ+1∕𝐻
5: ∀𝑠 ∈ : create a quantum oracle 𝐵𝑧ℎ,𝑠 encoding

𝑧ℎ,𝑠 ∈ ℝ defined by
𝑧ℎ,𝑠(𝑎) ← 𝐻 ⋅QMEBO𝜁 (𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1, 𝑂, 𝐵𝑉ℎ+1 ,
𝜖

2𝐻2)−
𝜖
2𝐻6: ∀𝑠 ∈ : create quantum oracle 𝐵�̂�ℎ,𝑠 encoding

�̂�ℎ,𝑠 ∈ ℝ with 𝑂 and 𝐵𝑧ℎ,𝑠 satisfying
�̂�ℎ,𝑠(𝑎) ← max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0}

7: ∀𝑠 ∈ : �̂�(𝑠, ℎ) ← QMS𝛿{�̂�ℎ,𝑠(𝑎) ∶ 𝑎 ∈ }
8: ∀𝑠 ∈ : 𝑉ℎ(𝑠) ← �̂�ℎ,𝑠

(

�̂�(𝑠, ℎ)
)

9: end for
10: Return: �̂�, {𝑉ℎ}𝐻−1

ℎ=0

to output an estimate �̂� of 𝜇 ∶= 𝔼[𝑓 (𝑥)|𝑥 ∼ 𝑝] = 𝑝T𝑓 such
that 𝑃𝑟(|�̃� − 𝜇| < 𝜖) > 1 − 𝛿 for any 𝛿 > 0.

We denote QMEBO𝛿(𝑝T𝑓, 𝐵𝑝, 𝐵𝑓 , 𝜖) as an estimate of 𝑝T𝑓 ,
to an error less than 𝜖 with probability at least 1−𝛿 obtained
by QMEBO. The key step of QMEBO lies in line 4, where
a binary oracle 𝐵𝑝 is transformed into a unitary oracle �̂�𝑝.
Unlike 𝐵𝑝, �̂�𝑝 encodes the information of the probability
distribution 𝑝 in amplitude rather than in quantum state.
Using �̂�𝑝, we prepare the state |𝜓 (0)

⟩ defined as
1

√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩+
√

𝑁 − 1
𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖
𝑁 − 1

|𝑖⟩ |1⟩ . (2)

The transformation and the required query complexity are
presented in Theorem A.3. After encoding the function 𝑓
in the amplitudes (lines 5-6), the amplitude estimation (The-
orem A.5) is applied to compute an estimate 𝜇𝑘 of 𝑝T𝑓∕𝑁
with an error of 𝜖∕𝑁 in the loop 𝑘. Finally, guaranteed
by the Powering lemma (Lemma A.4), the output �̂� is an
𝜖-estimate of 𝑝T𝑓 with probability at least 1 − 𝛿. The com-
plete version and full analysis of QMEBO is presented in
Appendix A.4.
With QMEBO, it only requires 𝑂(√𝑆∕𝜖) queries to the
oracle 𝑂 to obtain an 𝜖-estimate of 𝑃 T

ℎ|𝑠,𝑎𝑉 for any
𝑉 ∈ [0, 1] . Compared with computing the precise value
of 𝑃 T

ℎ|𝑠,𝑎𝑉 with 𝑂(𝑆) queries to 𝑂, QMEBO reduces
the query complexity from 𝑂(𝑆) to 𝑂(√𝑆). Finally, QVI-
2 only requires �̃�(𝑆1.5poly(√𝐴,𝐻, 1∕𝜖)) queries to 𝑂(Theorem 3.9). By suitably controlling the error induced by
QMEBO, one can ensure that QVI-2 can obtain 𝜖-optimal
policies and V-value functions (Theorem 3.8). Note that
we subtract the 𝐻 times error induced by QMEBO in line
5 of QVI-2 which allows the estimates 𝑧ℎ,𝑠(𝑎) to have an

5

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 3 Quantum Mean Estimation with Binary Ora-
cles QMEBO𝛿(𝑝T𝑓, 𝐵𝑝, 𝐵𝑓 , 𝜖)

1: Require: 𝐵𝑝 encoding a probability distribution 𝑝 =
(𝑝𝑖)𝑖∈Ω on a finite setΩwith cardinality𝑁 ,𝐵𝑓 encoding
a function 𝑓 = (𝑓𝑖)𝑖∈Ω where 𝑓𝑖 ∈ [0, 1], maximum
error 𝜖, maximum failure probability 𝛿 ∈ (0, 1).

2: Initialize: 𝐾 = 𝑂(log 1∕𝛿), 𝑇 = 𝑂(
√

𝑁
𝜖 +

√

𝑁
𝜖)

3: for 𝑘 ∈ [𝐾] do
4: Prepare state |𝜓 (0)

⟩ = �̂�𝑝 |0⟩ |0⟩ using 𝐵𝑝
5: Attach |0⟩⊗(𝑞+1) qubits on |𝜓 (0)

⟩ and apply 𝐵𝑓
|𝜓 (1)

⟩ = 1
√

𝑁

∑𝑁
𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ |Bi[𝑓𝑖]⟩ |0⟩ + |Φ(1)
⟩

6: Perform controlled rotation𝑅𝑓 based on |Bi[𝑓𝑖]⟩ and
revert 𝐵𝑓
|𝜓 (2)

⟩ = 1
√

𝑁

∑𝑁
𝑖=1

√

𝑝𝑖𝑓𝑖 |𝑖⟩ |000⟩ + |Φ(2)
⟩

7: Apply 𝑇 iterations of amplitude estimation with state
|𝜓⟩ = |𝜓 (2)

⟩, operator 𝑈 = 2 |𝜓⟩ ⟨𝜓| − 𝐼 , and pro-
jector 𝑃 = 𝐼 ⊗ |000⟩ ⟨000| to obtain 𝜇𝑘

8: end for
9: Return: �̂� = 𝑁 ⋅ Median({𝜇𝑘}𝑘∈[𝐾])

one-sided error. This is a variant of the monotonicity tech-
nique which was originally proposed for solving the infinite-
horizon MDPs more efficiently (Sidford et al., 2018). This
technique ensures that the value function 𝑉ℎ is bounded by
the value function of the policy 𝑉 �̂�

ℎ at the same time step.
Theorem 3.8 (Correctness of QVI-2). The outputs �̂� and
{𝑉ℎ}𝐻−1

ℎ=0 satisfy that 𝑉 ∗
ℎ − 𝜖 ≤ 𝑉ℎ ≤ 𝑉 �̂�

ℎ ≤ 𝑉 ∗
ℎ for all

ℎ ∈ [𝐻] with a success probability at least 1 − 𝛿.
Theorem 3.9 (Complexity of QVI-2). The quantum query
complexity of QVI-2 in terms of the quantum oracle of MDPs
𝑂 is

𝑂
(𝑆1.5

√

𝐴𝐻3 log(𝑆𝐴1.5𝐻∕𝛿)
𝜖

)

. (3)

4. Generative Model Setting
Even though the exact dynamic model allows precise cal-
culation of optimal policies and values, such a model is not
always readily available in a complex environment. In this
section, we focus on the generative model setting as studied
in (Li et al., 2020). Specifically, we assume that the agent
lacks full access to the transition probabilities but can query
a generative model to sample transitions for specific state-
action pairs. Note that similar models have often been used
in the classical setting, where one is assumed to have access
to a generative model 𝐺, which can generate𝑁 independent
samples for each (𝑠, 𝑎, ℎ) ∈ × × [𝐻] satisfying

𝑠𝑖ℎ(𝑠, 𝑎)
i.i.d.∼ 𝑃ℎ|𝑠,𝑎, 𝑖 = 1,… , 𝑁. (4)

Correspondingly, we define a quantum generative model
for an MDP in Definition 4.1. It is important to point

out that the quantum state output by is similar to a sample
drawn from the probability distribution 𝑃ℎ|𝑠,𝑎 in Eq. (4).
Definition 4.1 (Quantum generative model of an MDP). The
quantum generative model of a time-dependent and finite-
horizon MDP is a unitary matrix ∶ ℂ𝑆 ⊗ℂ𝐴⊗ℂ𝐻 ⊗
ℂ𝑆 ⊗ ℂ𝐽 → ℂ𝑆 ⊗ ℂ𝐴 ⊗ ℂ𝐻 ⊗ ℂ𝑆 ⊗ ℂ𝐽 satisfying

 ∶ |𝑠⟩ |𝑎⟩ |ℎ⟩ |0⟩ |0⟩

↦ |𝑠⟩ |𝑎⟩ |ℎ⟩

(

∑

𝑠′

√

𝑃ℎ|𝑠,𝑎(𝑠′) |𝑠′⟩ |𝑗𝑠′⟩

)

,
(5)

where 𝐽 ≥ 0 is an arbitrary integer and |𝑗𝑠′⟩ ∈ ℂ𝐽 are
arbitrary auxiliary states.
We define the number of calls which an algorithm makes
to the quantum generative model or classical generative
model 𝐺 as its quantum or classical sample complexity. As
discussed in Section 3, comparing quantum and classical
time complexities can be reduced to comparing quantum and
classical sample complexities. This reduction is reasonable
because, provided that the classical circuit for𝐺 is accessble,
 and 𝐺 have similar costs at the elementary gate level. An
efficient construction of using access to the classical cir-
cuit of 𝐺 is provided in (Wang et al., 2021). In the classical
setting, if𝐺 can be called in constant time, the classical time
complexities match the classical sample complexities. Fur-
ther, since can be constructed from𝐺with comparable cost
at the elementary gate level, the quantum time complexities
match the quantum sample complexities up to log factors,
provided that 𝐺 can be called in constant time and quantum
random access memory (QRAM) (Giovannetti et al., 2008)
is available to efficiently encode transition probabilities into
quantum amplitudes.
We formally state the optimization goals in this setting.
For a given time-dependent and finite-horizon MDP ,
𝜖 ∈ (0,𝐻] and 𝛿 ∈ (0, 1), we want to obtain 𝜖-optimal
policies, V-value functions and Q-value functions with prob-
ability at least 1−𝛿. With these objectives, we aim to design
algorithms that require as few queries to the quantum gener-
ative model as possible.
Before delving into our algorithms, we first introduce another
important quantum subroutine, quantum mean estimation,
in Theorem 4.2. Quantum mean estimation consists of two
similar quantum algorithms, which are QME1 and QME2.
Both of them are referred to as QME.
Theorem 4.2 (Quantum mean estimation (Montanaro,
2015)). There are two quantum algorithms, denoted as
QME1 and QME2, with the following properties. Let Ω
be a finite set, 𝑝 = (𝑝𝑥)𝑥∈Ω a discrete probability distribu-
tion over Ω, and 𝑓 ∶ Ω → ℝ a function. Assume access
to a quantum oracle 𝑈𝑝 for the probability distribution 𝑝
satisfying 𝑈𝑝 ∶ |0⟩ |0⟩ ↦

∑

𝑥∈Ω
√

𝑝𝑥 |𝑥⟩ |𝑗𝑥⟩ where |𝑗𝑥⟩
are arbitrary auxiliary states, as well as an oracle 𝐵𝑓 for
the function 𝑓 . Then,

6

Quantum Algorithms for Finite-horizon Markov Decision Processes

1. Taking 𝑢, 𝜖 > 0 as additional inputs, along with the
assumption that 0 ≤ 𝑓 (𝑥) ≤ 𝑢 for all 𝑥 ∈ Ω, QME1
requires 𝑂

(𝑢
𝜖 +

√

𝑢
𝜖

)

invocations of 𝑈𝑝 and 𝐵𝑓 ,
2. Taking 𝜎 > 0 and 𝜖 ∈ (0, 4𝜎) as additional inputs,

along with the assumption that Var[𝑓 (𝑥) ∣ 𝑥 ∼ 𝑝] ≤ 𝜎2,
QME2 needs 𝑂

(𝜎
𝜖 log

2(𝜎𝜖)
)

invocations of 𝑈𝑝 and 𝐵𝑓 ,
to output an estimate �̃� of 𝜇 = 𝔼[𝑓 (𝑥) ∣ 𝑥 ∼ 𝑝] = 𝑝𝑇 𝑓
satisfying Pr(|�̃�−𝜇| > 𝜖) < 1∕3. Furthermore, by repeating
either QME1 or QME2 a total of 𝑂(log(1∕𝛿)) times and
taking the median of the outputs, one can obtain another
estimate �̂� of 𝜇 such that Pr(|�̂� − 𝜇| < 𝜖) > 1 − 𝛿.

We denote QME{𝑖}𝛿(𝑝𝑇 𝑓, 𝜖) as an estimate of 𝑝T𝑓 to an
error at most 𝜖 with probability at least 1 − 𝛿, obtained via
QME{𝑖} for 𝑖 ∈ {1, 2}. Roughly speaking, QME1 is a
quantum version of Hoeffding’s inequality, while QME2
corresponds to the Chebyshev’s (or Bernstein’s) inequality.
For example, for a random variable 𝑋 ∈ [0, 𝑢], Hoeffding’s
inequality implies that 𝑂(𝑢2∕𝜖2) samples are required to
obtain an 𝜖-estimation of 𝔼[𝑋]. In comparison, QME1 only
requires 𝑂(𝑢∕𝜖) quantum samples when 𝜖 ∈ (0, 𝑢].
Next, we will discuss how to apply the quantum subroutines,
QME and QMS, into the model-free algorithms for finite-
horizon MDPs by (Sidford et al., 2023) and (Sidford et al.,
2018), and propose two quantum algorithms QVI-3 and
QVI-4 which have significantly less sample complexity than
the SOTA classical algorithms (Li et al., 2020).
4.1. Technical Overview of QVI-3

We first briefly review the main idea of the classical al-
gorithm RandomizedFiniteHorizonVI proposed in
(Sidford et al., 2023). In the standard value iteration al-
gorithm (See Algorithm 6), we initialize 𝑉𝐻 ∈ ℝ with
all zero entries and repeatedly apply the Bellman recursion
𝑉ℎ = ℎ(𝑉ℎ+1) starting from the last time step and mov-
ing backward to the first, where the Bellman value operator
 ℎ ∶ ℝ → ℝ is defined as

[ℎ(𝑉ℎ+1)]𝑠 ∶= max
𝑎∈

{𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1}, (6)

for all 𝑠 ∈ . Instead of computing the exact value,
they obtain an approximation of [ℎ(𝑉ℎ+1)]𝑠 by estimat-
ing 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 via sampling from the classical generative
model 𝐺 and taking maximum over the action space .
In order to obtain 𝜖-optimal policies and V-value func-
tions, they control the error of estimating 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 to be
𝜖∕𝐻 . If it also holds that ‖

‖

𝑉ℎ+1‖‖∞ ≤ 𝐻 , then it requires
𝑂
(

𝑆𝐴𝐻2∕(𝜖2∕𝐻2)
)

= 𝑂(𝑆𝐴𝐻4∕𝜖2) queries to 𝐺 at each
time step ℎ to obtain the estimates of 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 for all state-
action pairs, according to the Hoeffding’s inequality. Finally,
the classical sample complexity of obtaining near optimal
policy and values would be𝑂(𝑆𝐴𝐻5∕𝜖2). The sample com-
plexity derived from above informal analysis matches the

Algorithm 4 Quantum Value Iteration QVI-3(, 𝜖, 𝛿)
1: Require: MDP, generative model , maximum error
𝜖 ∈ (0,𝐻], maximum failure probability 𝛿 ∈ (0, 1).

2: Initialize: 𝜁 ← 𝛿∕
(

4𝑐𝑆𝐴1.5𝐻 log(1∕𝛿)
), 𝑉𝐻 ← 𝟎.

3: for ℎ ∶= 𝐻 − 1,… , 0 do
4: create a quantum oracle 𝐵𝑉ℎ+1 encoding 𝑉ℎ+1 ∈ ℝ

5: ∀𝑠 ∈ ∶ create a quantum oracle 𝐵𝑧ℎ,𝑠 encoding
𝑧ℎ,𝑠 ∈ ℝ with and 𝐵𝑉ℎ+1 satisfying
𝑧ℎ,𝑠(𝑎) ← QME1𝜁

(

(𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1),

𝜖
2𝐻

)

− 𝜖
2𝐻

6: create a quantum oracle 𝐵𝑟ℎ encoding 𝑟ℎ ∈ ℝ×

7: ∀𝑠 ∈ ∶ create a quantum oracle 𝐵�̂�ℎ,𝑠 encoding
�̂�ℎ,𝑠 ∈ ℝ with 𝐵𝑟ℎ and 𝐵𝑧ℎ,𝑠 satisfying
�̂�ℎ,𝑠(𝑎) ← max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0}

8: ∀𝑠 ∈ ∶ �̂�(𝑠, ℎ) ← QMS𝛿{�̂�ℎ,𝑠(𝑎) ∶ 𝑎 ∈ }
9: ∀𝑠 ∈ ∶ 𝑉ℎ(𝑠) ← �̂�ℎ,𝑠

(

�̂�(𝑠, ℎ)
)

10: end for
11: Return: �̂�, {𝑉ℎ}𝐻−1

ℎ=0

sample complexity of the algorithm in (Sidford et al., 2023)
(up to log-factors).
Now, we show how to achieve speedup in 𝐴,𝐻 and 𝜖
by using the quantum subroutines QME and QMS. By
using quantum mean estimation QME1, it only requires
𝑂
(

𝑆𝐴
√

𝐻2∕(𝜖2∕𝐻2)
)

= 𝑂(𝑆𝐴𝐻2∕𝜖) queries to the quan-
tum generative oracle to obtain 𝜖-approximations of
𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 for all pairs (𝑠, 𝑎) ∈ × at each time step.

Hence, the total quantum query complexity in 𝐻 iterations
becomes 𝑂(𝑆𝐴𝐻3∕𝜖). Furthermore, we apply the quantum
maximum searching QMS in the Bellman recursion to max-
imize the value on the RHS of Eq. (6). Then, the query
complexity further reduces to 𝑂(𝑆√𝐴𝐻3∕𝜖). These are
the fundamental ideas of Algorithm 4, denoted as QVI-3. In
order to correctly apply QME, we also apply the monotonic-
ity technique in QVI-3 by subtracting the error induced by
QME1 so that the V values 𝑉ℎ at each time step are bounded
in [0,𝐻]. Finally, QVI-3 can obtain not only an 𝜖-optimal
policy �̂� but also 𝜖-optimal V-value functions {𝑉ℎ}𝐻−1

ℎ=0 (The-
orem 4.3) with probability at least 1−𝛿, which requires only
�̃�(𝑆

√

𝐴𝐻3∕𝜖) queries to the oracle (Theorem 4.4). The
rigorous proof of the correctness and complexity of QVI-3
are provided in Appendix B.1.
Theorem 4.3 (Correctness of QVI-3). The outputs �̂� and
{𝑉ℎ}𝐻−1

ℎ=0 satisfy that 𝑉 ∗
ℎ − 𝜖 ≤ 𝑉ℎ ≤ 𝑉 �̂�

ℎ ≤ 𝑉 ∗
ℎ for all

ℎ ∈ [𝐻] with a success probability at least 1 − 𝛿.

Theorem 4.4 (Complexity of QVI-3). The quantum query
complexity of QVI-3 in terms of the quantum generative
oracle is

𝑂
(𝑆

√

𝐴𝐻3 log(𝑆𝐴1.5𝐻∕𝛿)
𝜖

)

. (7)

7

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 5 Quantum Value Iteration QVI-4(, 𝜖, 𝛿)

1: Require: MDP , generative model , maximum error 𝜖 ∈ (0,
√

𝐻], maximum failure probability 𝛿 ∈ (0, 1).
2: Initialize: 𝐾 ← ⌈log2(𝐻∕𝜖)⌉ + 1, 𝜁 ← 𝛿∕4𝐾𝐻𝑆𝐴, 𝑐 = 0.001, 𝑏 = 1
3: Initialize: ∀ℎ ∈ [𝐻] ∶ 𝑉 (0)

0,ℎ ← 𝟎; ∀𝑠 ∈ , ℎ ∈ [𝐻] ∶ 𝜋(0)0 (𝑠, ℎ) ← arbitrary action 𝑎 ∈ .
4: for 𝑘 = 0,… , 𝐾 − 1 do
5: 𝜖𝑘 ← 𝐻∕2𝑘, 𝑉𝑘,𝐻 ← 𝟎, 𝑉 (0)

𝑘,𝐻 ← 𝟎

6: ∀(𝑠, 𝑎, ℎ) ∈ × × [𝐻] ∶ 𝑦𝑘,ℎ(𝑠, 𝑎) ← max
{

QME1𝜁
(

𝑃 T
ℎ|𝑠,𝑎(𝑉

(0)
𝑘,ℎ+1)

2, 𝑏
)

−
(

QME1𝜁 (𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1, 𝑏∕𝐻)

)2, 0
}

7: ∀(𝑠, 𝑎, ℎ) ∈ ××[𝐻] ∶ 𝑥𝑘,ℎ(𝑠, 𝑎) ← QME2𝜁
(

𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1, 𝑐𝐻

−1.5𝜖
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏
)

−𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏
8: for ℎ ∶= 𝐻 − 1,… , 0 do
9: ∀(𝑠, 𝑎) ∈ × ∶ 𝑔𝑘,ℎ(𝑠, 𝑎) ← QME1𝜁

(

𝑃 T
ℎ|𝑠,𝑎(𝑉𝑘,ℎ+1 − 𝑉

(0)
𝑘,ℎ+1), 𝑐𝐻

−1𝜖𝑘
)

− 𝑐𝐻−1𝜖𝑘
10: ∀(𝑠, 𝑎) ∈ × ∶ 𝑄𝑘,ℎ(𝑠, 𝑎) ← max{𝑟ℎ(𝑠, 𝑎) + 𝑥𝑘,ℎ(𝑠, 𝑎) + 𝑔𝑘,ℎ(𝑠, 𝑎), 0}
11: ∀𝑠 ∈ ∶ 𝑉𝑘,ℎ(𝑠) ← 𝑉𝑘,ℎ(𝑠) ← [𝑉 (𝑄𝑘,ℎ)]𝑠, �̃�𝑘(𝑠, ℎ) ← 𝜋𝑘(𝑠, ℎ) ← [𝜋(𝑄𝑘,ℎ)]𝑠
12: ∀𝑠 ∈ ∶ if 𝑉𝑘,ℎ(𝑠) ≤ 𝑉 (0)

𝑘,ℎ (𝑠), then 𝑉𝑘,ℎ(𝑠) ← 𝑉 (0)
𝑘,ℎ (𝑠) and 𝜋𝑘(𝑠, ℎ) ← 𝜋(0)𝑘 (𝑠, ℎ)

13: end for
14: ∀ℎ ∈ [𝐻] ∶ 𝑉 (0)

𝑘+1,ℎ ← 𝑉𝑘,ℎ and 𝜋(0)𝑘+1(⋅, ℎ) ← 𝜋𝑘(⋅, ℎ)
15: end for
16: Return: �̂� ∶= 𝜋𝐾−1, {𝑉ℎ}𝐻−1

ℎ=0 ∶= {𝑉𝐾−1,ℎ}𝐻−1
ℎ=0 , {�̂�ℎ}𝐻−1

ℎ=0 ∶= {𝑄𝐾−1,ℎ}𝐻−1
ℎ=0

4.2. Technical Overview of QVI-4

Note that QVI-3 can only obtain 𝜖-optimal policy and V-
value functions. Below, we will introduce another algorithm,
QVI-4 in Algorithm 5, which can obtain not only 𝜖-optimal
policies and V-value functions, but also Q-value functions.
In this setting, although we can no longer attain a speed-up
in 𝐴, we attain a speed-up in 𝐻 by utilizing two additional
techniques in (Sidford et al., 2018): "variance reduction"
and "total variance".
We now introduce the essential ideas of the two new tech-
niques and show how to integrate these techniques with
the quantum mean estimation QME to reduce the sample
complexity. First, the main idea of variance reduction tech-
nique is that, instead of using the standard value iteration
algorithm (Algorithm 6) directly for a target approxima-
tion error 𝜖, one repeats the value iteration algorithm for
𝐾 = 𝑂(log(𝐻∕𝜖)) epochs with decreasing 𝜖𝑘 satisfying
𝜖𝑘 = 𝜖𝑘−1∕2 and 𝜖𝐾 = 𝜖. In each epoch 𝑘, we obtain 𝜖𝑘-
optimal V-value functions {𝑉𝑘,ℎ}𝐻−1

ℎ=0 , Q-value functions
{𝑄𝑘,ℎ}𝐻−1

ℎ=0 and policy 𝜋𝑘. Note that, at the time step ℎ in
epoch 𝑘, the second term on the RHS of Eq. (6) can be
rewritten as follows
𝑃 T
ℎ|𝑠,𝑎𝑉𝑘,ℎ+1 = 𝑃 T

ℎ|𝑠,𝑎(𝑉𝑘,ℎ+1 − 𝑉
(0)
𝑘,ℎ+1) + 𝑃

T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1, (8)

where 𝑉 (0)
𝑘,ℎ+1 ∈ ℝ is defined as an initial V-value function

for the time step ℎ + 1 from the previous epoch 𝑘 − 1. Note
that there are a total 𝑆𝐴 of these equations, each of which
is corresponding to a pair (𝑠, 𝑎) ∈ ×. Rather than di-
rectly obtaining 𝜖𝑘∕𝐻-estimation of 𝑃 T

ℎ|𝑠,𝑎𝑉𝑘,ℎ+1, we instead
obtain 𝜖𝑘∕(2𝐻) estimations of both 𝑃 T

ℎ|𝑠,𝑎(𝑉𝑘,ℎ+1 − 𝑉
(0)
𝑘,ℎ+1)

and 𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1. For the first estimation, if we have 𝟎 ≤

𝑉𝑘,ℎ+1 − 𝑉
(0)
𝑘,ℎ+1 ≤ 𝑐𝜖𝑘 for some constant 𝑐 > 0, it can be

done up to error 𝜖𝑘∕(2𝐻) using only 𝑂(𝐻2) classical sam-
ples or 𝑂(𝐻) quantum samples by the Hoeffding’s bound or
QME1, respectively. Similarly, for the second estimation, if
it holds that 𝟎 ≤ 𝑉 (0)

𝑘,ℎ+1 ≤ 𝐻 , it requires𝑂(𝐻4∕𝜖2𝑘) classical
samples or 𝑂(𝐻2∕𝜖𝑘) quantum samples. The overall clas-
sical sample complexity is 𝑂(𝐾𝐻𝑆𝐴(𝐻4∕𝜖2𝑘 + 𝐻2)

)

=
�̃�(𝑆𝐴𝐻5∕𝜖2𝑘), while the quantum sample complexity is
𝑂
(

𝐾𝐻𝑆𝐴(𝐻2∕𝜖𝑘 +𝐻)
)

= �̃�(𝑆𝐴𝐻3∕𝜖𝑘). Note that un-
like Section 4.1, we do not expect a speedup from 𝐴 to
√

𝐴 here, since we need to estimate the Q-values for all
actions (instead of finding the action with the highest Q-
value). Although the variance reduction technique alone
does not achieve a speedup in 𝐻 compared with QVI-3, we
will see the advantage when combined with the subsequent
total variance technique.
The total variance technique stems from the observation
that the actual error propagation across time steps is much
smaller than previously assumed. Previously, the error in
estimating 𝜇𝑠,𝑎𝑘,ℎ ∶= 𝑃 T

ℎ|𝑠,𝑎𝑉
(0)
𝑘,ℎ+1 at each time step was set

to 𝜖𝑘∕(2𝐻), ensuring that the total error accumulated over
𝐻 iterations remains bounded by 𝜖𝑘∕2. In fact, the per-
step error can be further relaxed to 𝜖𝑘𝜎𝑠,𝑎𝑘,ℎ∕(2𝐻1.5), where
𝜎𝑠,𝑎𝑘,ℎ ∶= [𝜎ℎ(𝑉

(0)
𝑘,ℎ+1)](𝑠, 𝑎). This error value can reach

up to 𝜖𝑘∕(2
√

𝐻). As the cumulative standard deviation
∑𝐻−1
ℎ=0 𝜎

𝑠,𝑎
𝑘,ℎ is associated with an expression that can be non-

trivially upper-bounded by𝐻1.5 (Lemma B.2), the total error
remains 𝜖𝑘∕2. With classical algorithms, 𝜇𝑠,𝑎𝑘,ℎ can be esti-
mated with an error 𝜖𝜎𝑠,𝑎𝑘,ℎ without explicitly knowing 𝜎𝑠,𝑎𝑘,ℎ.
This requires overall 𝑂(𝑆𝐴(𝜖∕𝐻1.5)−2

)

= 𝑂(𝑆𝐴𝐻3∕𝜖2)

8

Quantum Algorithms for Finite-horizon Markov Decision Processes

classical samples per time step at each epoch, as guaranteed
by Chebyshev’s (or Bernstein’s) inequality. When combined
with the variance reduction technique in estimating the first
term on the RHS of Eq. (8), this approach achieves an over-
all classical sample complexity of �̃�(𝑆𝐴𝐻4∕𝜖2), matching
the complexity of the algorithm in (Sidford et al., 2018)1.
Inspired by (Wang et al., 2021), we can adapt the total vari-
ance technique in the quantum setting. The main challenge
is that we cannot directly apply the quantum mean estima-
tion QME2 like its classical counterpart. First, QME2 can-
not estimate 𝜇𝑠,𝑎𝑘,ℎ to an error of 𝜖𝜎𝑠,𝑎𝑘,ℎ∕(2𝐻1.5) without prior
knowledge of 𝜎𝑠,𝑎𝑘,ℎ. To address this, we can use QME1 to ob-
tain an estimate (�̂�𝑠,𝑎𝑘,ℎ)2 of (𝜎𝑠,𝑎𝑘,ℎ)2 with an error 4𝑏 > 0, then
use QME2 to estimate 𝜇𝑠,𝑎𝑘,ℎ with an error 𝜖𝜎𝑠,𝑎𝑘,ℎ∕(2𝐻1.5),
where 𝜎𝑠,𝑎𝑘,ℎ ∶=

√

(�̂�𝑠,𝑎𝑘,ℎ)
2 − 4𝑏 ≤ 𝜎𝑠,𝑎𝑘,ℎ, to maintain the

correctness. Second, QME2 also requires upper bounds
𝐶 ∈ ℝ on 𝜎𝑠,𝑎𝑘,ℎ. Observing that its sample complexity
𝑂(𝐶∕𝜖) can be inefficient for large 𝐶 , an ideal way is to
use 𝜎𝑠,𝑎𝑘,ℎ ∶=

√

(�̂�𝑠,𝑎𝑘,ℎ)
2 + 4𝑏 as 𝐶 . However, this may lead to

an unbounded complexity ratio ((�̂�𝑠,𝑎𝑘,ℎ)2+4𝑏
)

∕
(

(�̂�𝑠,𝑎𝑘,ℎ)
2−4𝑏

).
To resolve this, we estimate 𝜇𝑠,𝑎𝑘,ℎ with an error proportional
to 𝜎𝑠,𝑎𝑘,ℎ, ensuring𝐶∕𝜎𝑠,𝑎𝑘,ℎ = 1. Although the correctness may
not hold due to 𝜎𝑠,𝑎𝑘,ℎ > 𝜎𝑠,𝑎𝑘,ℎ, we can bound 𝜎𝑠,𝑎𝑘,ℎ ≤ 𝜎𝑠,𝑎𝑘,ℎ+

√

7𝑏
and suppress the extra error by setting 𝑏 and the parame-
ter 𝑐 in QVI-4 as small constants. Ultimately, QVI-4 can
obtain 𝜖-optimal policies, V-value functions and Q-value
functions (Theorem 4.5) with �̃�(𝑆𝐴𝐻2.5∕𝜖) queries to the
quantum generative oracle (Theorem 4.6), which holds for
𝜖 = 𝑂(1∕

√

𝐻). The proof of the correctness and complex-
ity of QVI-4 is presented in Appendix B.2.
Theorem 4.5 (Correctness of QVI-4). The outputs �̂�,
{𝑉ℎ}𝐻ℎ=0 and {�̂�ℎ}𝐻ℎ=0 satisfy that

𝑉 ∗
ℎ − 𝜖 ≤ 𝑉ℎ ≤ 𝑉 �̂�

ℎ ≤ 𝑉 ∗
ℎ , (9)

𝑄∗
ℎ − 𝜖 ≤ �̂�ℎ ≤ 𝑄�̂�ℎ ≤ 𝑄∗

ℎ, (10)
for all ℎ ∈ [𝐻] with a success probability at least 1 − 𝛿.
Theorem 4.6 (Complexity of QVI-4). The quantum query
complexity of QVI-4 in terms of the quantum generative
oracle is

𝑂
(

𝑆𝐴(𝐻
2.5

𝜖
+𝐻3) log2(𝐻

1.5

𝜖
) log(log(𝐻

𝜖
)𝐻𝑆𝐴∕𝛿)

)

.
(11)

4.3. Quantum Lower Bound for Finite-horizon MDPs

We now state the quantum lower bound of the sample com-
plexity for obtaining the 𝜖-optimal policy, V-value func-

1The result in (Sidford et al., 2018) was originally presented for
the time-independent case. We adapt it here for the time-dependent
case with an additional factor of 𝐻 .

tions and Q-value functions for a finite-horizon and time-
dependent MDP . Our proof idea is to reduce an infinite-
horizon MDP problem to a finite-horizon MDP problem.
Specifically, we show that, if there is an algorithm that can
obtain an 𝜖-optimal V-value function for the finite-horizon
MDP, it also can give an 2𝜖-optimal V-value function to the
infinite-horizon MDP. Therefore, the lower bound of solv-
ing finite-horizon MDP with a quantum generative oracle
inherits from that of the infinite-horizon MDP. The full anal-
ysis is presented in Appendix B.3. Note that our achievable
quantum sample complexities of QVI-3 and QVI-4 differ
from the quantum lower bounds only by a factor of 𝐻 or
𝐻1.5, up to logarithmic factors.
Theorem 4.7 (Lower bounds for finite-horizon MDPs). Let
 and be finite sets of states and actions. Let 𝐻 > 0
be a positive integer and 𝜖 ∈ (0, 1∕2) be an error param-
eter. We consider the following time-dependent and finite-
horizon MDP = (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻), where

𝑟ℎ ∈ [0, 1]× for all ℎ ∈ [𝐻].

• Given access to a classical generative oracle 𝐺, any
algorithm , which takes as an input and outputs 𝜖-
approximations of {𝑄∗

ℎ}
𝐻−1
ℎ=0 {𝑉 ∗

ℎ }
𝐻−1
ℎ=0 or 𝜋∗ with prob-

ability at least 0.9, must call 𝐺 at least Ω
(𝑆𝐴𝐻3

𝜖2 log3(𝜖−1)

)

times on the worst case of input .

• Given access to a quantum generative oracle , any
algorithm , which takes as an input and outputs
𝜖-approximations of {𝑄∗

ℎ}
𝐻−1
ℎ=0 with probability at least

0.9, must call at least Ω
(𝑆𝐴𝐻1.5

𝜖 log1.5(𝜖−1)

)

times on the
worst case of input . Besides, any algorithm that
outputs 𝜖-approximations of {𝑉 ∗

ℎ }
𝐻−1
ℎ=0 or 𝜋∗ with prob-

ability at least 0.9 must call at least Ω
(𝑆

√

𝐴𝐻1.5

𝜖 log1.5(𝜖−1)

)

times on the worst case of input .

5. Conclusion
To the best of our knowledge, this is the first work to
rigorously study quantum algorithms for solving “time-
dependent” and “finite-horizon” MDPs. In the exact dynam-
ics setting, our quantum value iteration algorithm QVI-1
achieves a quadratic speedup in the size of the action space
(𝐴) for computing the optimal policy and V-value function,
while QVI-2 achieves an additional speedup in the size of
the state space (𝑆) for computing near-optimal policy and
V-value functions. In the generative model setting, our al-
gorithms QVI-3 and QVI-4 achieve speedups in 𝐴, time
horizon (𝐻), and approximation error (𝜖) over the SOTA
classical algorithm and are asymptotically optimal, up to
log terms, for computing near-optimal policies, V-value
functions, and Q-value functions, provided a constant time
horizon.

9

Quantum Algorithms for Finite-horizon Markov Decision Processes

Acknowledgements
We especially thank Zongqi Wan for providing insightful
guidance on quantum subroutines, including quantum maxi-
mum searching (Durr & Hoyer, 1999) and quantum mean
estimation algorithms (Montanaro, 2015), and for suggesting
helpful references, including (Cornelissen, 2018).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and AI via quantum computing. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, United States, Tech. Rep, 32:96,
2019.

AI, G. Q. et al. Quantum error correction below the surface
code threshold. Nature, 2024.

Alsheikh, M. A., Hoang, D. T., Niyato, D., Tan, H.-P., and
Lin, S. Markov decision processes with applications in
wireless sensor networks: A survey. IEEE Communica-
tions Surveys and Tutorials, 17(3):1239–1267, 2015.

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C.,
Barends, R., Biswas, R., Boixo, S., Brandao, F. G., Buell,
D. A., et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510,
2019.

Beals, R., Buhrman, H., Cleve, R., Mosca, M., and de Wolf,
R. Quantum lower bounds by polynomials. Journal of
the ACM, 48(4):778—-797, 2001.

Bellman, R. Dynamic programming and stochastic control
processes. Information and control, 1(3):228–239, 1958.

Bellman, R. Dynamic programming treatment of the travel-
ling salesman problem. Journal of the ACM, 9(1):61–63,
1962.

Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. Quantum
amplitude amplification and estimation. Contemporary
Mathematics, 305:53–74, 2002.

Chakraborty, S., Gilyén, A., and Jeffery, S. The power of
block-encoded matrix powers: Improved regression tech-
niques via faster Hamiltonian simulation. In Proceedings
of the 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019), pp. 33:1–33:14,
Patras, Greece, 2019.

Chen, Y. and Wang, M. Lower bound on the com-
putational complexity of discounted markov decision
problems, 2017. URL https://arxiv.org/abs/
1705.07312.

Cherrat, E. A., Kerenidis, I., and Prakash, A. Quantum
reinforcement learning via policy iteration. Quantum
Machine Intelligence, 5(2):30, 2023.

Cornelissen, A. Quantum gradient estimation and its ap-
plication to quantum reinforcement learning. Master’s
thesis, Technische Universiteit Delft, 2018.

Draper, T. G. Addition on a quantum computer. arXiv
preprint arXiv:quant-ph/0008033, 2000.

Durr, C. and Hoyer, P. A quantum algorithm for finding
the minimum. arXiv preprint arXiv:quant-ph/9607014,
1999.

Feng, X., Wan, Z., Fu, H., Liu, B., Yang, M., Koushik,
G. A., Hu, Z., Wen, Y., and Wang, J. Natural language
reinforcement learning. arXiv preprint arXiv:2411.14251,
2024.

Gilyén, A., Arunachalam, S., and Wiebe, N. Optimizing
quantum optimization algorithms via faster quantum gra-
dient computation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2019), pp. 1425–1444, San Diego, CA, United States,
2019.

Giovannetti, V., Lloyd, S., and Maccone, L. Quantum ran-
dom access memory. Physical Review Letters, 100(16):
160501, 2008.

Grover, L. K. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth An-
nual ACM Symposium on Theory of Computing (STOC
1996), pp. 212–219, Philadelphia, PA, United States,
1996.

He, J., Yang, F., Zhang, J., and Li, L. Quantum algorithm
for online convex optimization. Quantum Science and
Technology, 7(2):025022, 2022.

He, J., Liu, C., Liu, X., Li, L., and Lui, J. C. Quantum
algorithm for online exp-concave optimization. In Inter-
national Conference on Machine Learning, pp. 17946–
17971. PMLR, 2024.

Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. Random
generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science, 43:169–188,
1986.

Jordan, S. P. Fast quantum algorithm for numerical gradient
estimation. Physical review letters, 95(5):050501, 2005.

10

https://arxiv.org/abs/1705.07312
https://arxiv.org/abs/1705.07312

Quantum Algorithms for Finite-horizon Markov Decision Processes

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Breaking the
sample size barrier in model-based reinforcement learning
with a generative model. In Proceedings of the Advances
in Neural Information Processing Systems (NIPS 2020),
pp. 12861–12872, Vancouver, BC, Canada, 2020.

Liu, C., Guan, C., He, J., and Lui, J. Quantum algorithms
for non-smooth non-convex optimization. Advances in
Neural Information Processing Systems, 37:35288–35312,
2024.

Magniez, F., Nayak, A., Roland, J., and Santha, M. Search
via quantum walk. In Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing (STOC
2007), pp. 575–584, San Diego, CA, United States, 2007.

Matignon, L., Jeanpierre, L., and Mouaddib, A.-I. Coordi-
nated multi-robot exploration under communication con-
straints using decentralized Markov decision processes. In
Proceedings of the Twenty-Sixth AAAI Conference on Ar-
tificial Intelligence (AAAI 2012), pp. 2017–2023, Toronto,
ON, Canada, 2012.

Montanaro, A. Quantum speedup of Monte Carlo meth-
ods. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 471(2181):20150301,
2015.

Naguleswaran, S. and White, L. B. Quantum search in
stochastic planning. In Noise and Information in Nano-
electronics, Sensors, and Standards III, pp. 34–45, Austin,
TX, United States, 2005.

Naguleswaran, S., White, L., and Fuss, I. Automated plan-
ning using quantum computation. In Proceedings of the
Sixteenth International Conference on International Con-
ference on Automated Planning and Scheduling, pp. 418–
421, Cumbria, UK, 2006.

Nayak, A. and Wu, F. The quantum query complexity of
approximating the median and related statistics. In Pro-
ceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing (STOC 1999), pp. 384–393, Atlanta,
GA, United States, 1999.

Nielsen, M. A. and Chuang, I. L. Quantum Computation
and Quantum information. Cambridge University, 2010.

Oliveira, D. S. and Ramos, R. V. Quantum bit string com-
parator: Circuits and applications. Quantum Computers
and Computing, 7(1):17–26, 2007.

Powell, W. B. Approximate Dynamic Programming: Solving
the Curses of Dimensionality. John Wiley and Sons, 2007.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
2014.

Ruiz-Perez, L. and Garcia-Escartin, J. C. Quantum arith-
metic with the quantum Fourier transform. Quantum
Information Processing, 16(6):152, 2017.

Shor, P. W. Algorithms for quantum computation: Fiscrete
logarithms and factoring. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science
(FOCS 1994), pp. 124–134, Santa Fe, NM, United States,
1994.

Sidford, A. and Zhang, C. Quantum speedups for stochastic
optimization. Advances in Neural Information Processing
Systems, 36:35300–35330, 2023.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving Markov
decision processes with a generative model. In Proceed-
ings of the 32nd International Conference on Neural Infor-
mation Processing Systems (NIPS 2018), pp. 5192–5202,
Montréal, QC, Canada, 2018.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving Markov
decision processes. Naval Res. Logist., 70(5):423–442,
2023.

Vedral, V., Barenco, A., and Ekert, A. Quantum networks
for elementary arithmetic operations. Physical Review A,
54(1):147–153, 1996.

Wan, Z., Zhang, Z., Li, T., Zhang, J., and Sun, X. Quantum
multi-armed bandits and stochastic linear bandits enjoy
logarithmic regrets. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 10087–
10094, 2023.

Wang, D., Sundaram, A., Kothari, R., Kapoor, A., and Roet-
teler, M. Quantum algorithms for reinforcement learning
with a generative model. In Proceedings of the 38th Inter-
national Conference on Machine Learning (ICML 2021),
pp. 10916–10926, 2021.

Wang, S., Li, X., Lee, W. J. B., Deb, S., Lim, E., and Chat-
topadhyay, A. A comprehensive study of quantum arith-
metic circuits. arXiv preprint arXiv:2406.03867, 2024.

Wiedemann, S., Hein, D., Udluft, S., and Mendl, C. Quan-
tum policy iteration via amplitude estimation and Grover
search–towards quantum advantage for reinforcement
learning. arXiv preprint arXiv:2206.04741, 2022.

11

Quantum Algorithms for Finite-horizon Markov Decision Processes

A. Exact Dynamics Setting
A.1. Classical Algorithm for Finite-horizon MDPs

For the completeness, we restate the classical value iteration (or backward induction) algorithm in (Puterman, 2014).
Algorithm 6 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs

1: Require: MDP .
2: Initialize: 𝑉𝐻 ← 𝟎
3: for ℎ ∶= 𝐻 − 1,… , 0 do
4: for each 𝑠 ∈ do
5: for each 𝑎 ∈ do
6: 𝑄ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) +

∑

𝑠′∈
𝑃ℎ|𝑠,𝑎(𝑠′)𝑉ℎ+1(𝑠′)

7: end for
8: 𝜋(𝑠, ℎ) = argmax

𝑎∈
𝑄ℎ(𝑠, 𝑎)

9: 𝑉ℎ(𝑠) = 𝑄ℎ
(

𝑠, 𝜋(𝑠, ℎ)
)

10: end for
11: end for
12: Return: 𝜋, 𝑉0

A.2. Classical Lower Bounds

Proof. We define two sets of hard instances of finite-horizon MDP 𝑀1 and 𝑀2 which are the same as those in Section 4.1 in
(Chen & Wang, 2017). Specifically, suppose that the state space can be divided into four parts = 𝑈 ∪𝐺 ∪𝐵 ∪ {𝑠𝑁},
where the cardinalities of the sets 𝑈 ,𝐺 and 𝐵 satisfy 𝑆𝑈 = 𝑆𝐺 = 𝑆𝐵 = 𝑆−1

3 , and 𝑠𝑁 is a single action. Let the action
space be = 𝑈 ∪ {𝑎𝑁}, where the cardinality of the set 𝑈 satisfies 𝐴𝑈 = 𝐴 − 1 and 𝑎𝑁 is a single action. We now
construct two sets of MDP instances 𝑀1 and 𝑀2 that are hard to distinguish.

• Let 𝑀1 be the set of instances satisfying the following conditions.
– 𝑃ℎ = 𝑃 ∈ [0, 1]×× for all ℎ ∈ [𝐻] and 𝑟ℎ = 𝑟 ∈ [0, 1]×, where 𝐻 ≥ 2;
– For any (𝑠, 𝑎) satisfies 𝑠 ∈ 𝐺 ∪ 𝐵 ∪ {𝑠𝑁} and 𝑎 ∈ , the transition probabilities satisfy 𝑃 (𝑠′|𝑠, 𝑎) = 1 if 𝑠′ = 𝑠

and 𝑃 (𝑠′|𝑠, 𝑎) = 0 if 𝑠′ ≠ 𝑠, i.e., the states in 𝐺 ∪ 𝐵 ∪ {𝑠𝑁} are absorbing states. Besides, the reward functions
satisfy

𝑟(𝑠, 𝑎) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑠 ∈ 𝐺, 𝑎 ∈
0, if 𝑠 ∈ 𝐵 , 𝑎 ∈
1
2 , if 𝑠 = 𝑠𝑁 , 𝑎 ∈

. (12)

– For any 𝑎 ∈ 𝑈 and 𝑠 ∈ 𝑈 , the transition probability satisfies 𝑃 (𝑠′|𝑠, 𝑎) = 1 if 𝑠′ ∈ 𝐵 and 𝑃 (𝑠′|𝑠, 𝑎) = 0
otherwise, while the reward satisfies 𝑟(𝑠, 𝑎) = 0.

– For any 𝑎 = 𝑎𝑁 and 𝑠 ∈ 𝑈 , the transition probability satisfies 𝑃 (𝑠′|𝑠, 𝑎) = 1 if 𝑠′ = 𝑠𝑁 and 𝑃 (𝑠′|𝑠, 𝑎) = 0
otherwise, while the reward satisfies 𝑟(𝑠, 𝑎) = 0.

• Let 𝑀2 be the set of instances that are different from those in 𝑀1 at one state-action pair, which we denote by
(𝑠, 𝑎) ∈ 𝑈 ×𝑈 .

– When (𝑠, 𝑎) = (𝑠, 𝑎), the transition probability satisfies 𝑃 (𝑠′|𝑠, 𝑎) = 1 for some 𝑠′ ∈ 𝐺 and 𝑃 (𝑠′|𝑠, 𝑎) = 0
otherwise, while the reward satisfies 𝑟(𝑠, 𝑎) = 0.

From the above definitions, we can know that the cardinalities of𝑀1 and𝑀2 are |𝐵||𝑈×𝑈 | and |𝑈 ×𝑈 |× |𝐵||𝑈×𝑈 |,
respectively. We now compute the optimal V-value function 𝑉 ∗

0,1
for any finite-horizon MDP 1 ∈𝑀1.

• For 𝑠 ∈ 𝐺, 𝑉 ∗
𝐻−1,1

(𝑠) = max𝑎∈{𝑟(𝑠, 𝑎) +𝑃 T
𝐻|𝑠,𝑎𝑉

∗
𝐻,1

} = 1, because 𝑉 ∗
𝐻,1

= 𝟎. Further, since 𝑠 is an absorbing
state, 𝑉 ∗

ℎ,1
(𝑠) = 1 + 𝑉 ∗

ℎ+1,1
(𝑠) = 𝐻 − ℎ. Hence, we can compute 𝑉 ∗

0,1
(𝑠) = 𝐻 .

12

Quantum Algorithms for Finite-horizon Markov Decision Processes

• For 𝑠 ∈ 𝐵 , since 𝑟(𝑠, 𝑎) = 0 for all 𝑎 ∈ and 𝑠 is an absorbing state, we can compute 𝑉 ∗
ℎ,1

(𝑠) = 0 for all ℎ ∈ [𝐻].

• When 𝑠 = 𝑠𝑁 , since 𝑟(𝑠, 𝑎) = 1
2 for all 𝑎 ∈ and 𝑠 is also an absorbing state, we can compute 𝑉 ∗

ℎ,1
(𝑠) =

1
2 + 𝑉

∗
ℎ+1,1

(𝑠) = 𝐻−ℎ
2 and 𝑉 ∗

0,1
(𝑠) = 𝐻

2 .
• For 𝑠 ∈ 𝑈 , we can compute 𝑉 ∗

𝐻−1,1
(𝑠) = max𝑎∈{𝑟(𝑠, 𝑎)} = 0. Further, by the Bellman optimality equation

(Bellman, 1958), we can compute
𝑉 ∗
𝐻−2,1

(𝑠) = max
𝑎∈

{𝑟(𝑠, 𝑎) +
∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

𝐻−1,1
(𝑠′)}

= max{𝑉 ∗
𝐻−1,1

(𝑠)1{𝑠 ∈ 𝐵}, 𝑉 ∗
𝐻−1,1

(𝑠𝑁)}

= max{0, 1
2
}.

(13)

The second line comes from the fact that 𝑟(𝑠, 𝑎) = 0 for any 𝑎 ∈ and state 𝑠 will transition to 𝑠𝑁 if 𝑎 = 𝑎𝑁or transition to some state 𝑠 ∈ 𝐵 if 𝑎 ∈ 𝑈 . By induction, we know that 𝑉 ∗
ℎ,1

(𝑠) = max{𝑉 ∗
ℎ+1,1

(𝑠)1{𝑠 ∈

𝐵}, 𝑉 ∗
ℎ+1,1

(𝑠𝑁)} = max{0, 𝐻−ℎ+1
2 } and 𝑉 ∗

0,1
(𝑠) = 𝐻−1

2 .

Similarly, we can compute the optimal V-value function 𝑉 ∗
0,2

for any finite-horizon MDP 2 ∈ 𝑀2. Since 2 only
differs from 1 on the state-action pair (𝑠, 𝑎) ∈ 𝑈 ×𝑈 and the states 𝑠 ∈ 𝐺 ×𝐵 ×{𝑠𝑁} are absorbing states, 𝑉 ∗

ℎ,2
(𝑠)

only differs from 𝑉 ∗
ℎ,1

(𝑠) on state 𝑠. Specifically, 𝑉 ∗
𝐻−1,2

(𝑠) = max𝑎∈{𝑟(𝑠, 𝑎)} = 0 and

𝑉 ∗
ℎ,2

(𝑠) = max
𝑎∈

{𝑟(𝑠, 𝑎) +
∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

ℎ+1,2
(𝑠′)}

= max{𝑉 ∗
ℎ+1,2

(𝑠)1{𝑠 ∈ 𝐵}, 𝑉 ∗
ℎ+1,2

(𝑠)1{𝑠 ∈ 𝐺}, 𝑉 ∗
ℎ+1,2

(𝑠𝑁)}

= max{0,𝐻 − ℎ + 1, 𝐻 − ℎ + 1
2

}

= 𝐻 − ℎ + 1.

(14)

The first line comes from the Bellman optimality equation (Bellman, 1958). The second line comes from the fact that
𝑟(𝑠, 𝑎) = 0 for all 𝑎 ∈ and the state 𝑠 will transition to some state 𝑠′ ∈ 𝐵 , 𝑠′ ∈ 𝐺 or 𝑠′ = 𝑠𝑁 under the action
𝑎 ∈ 𝑈 ⧵ {𝑎}, 𝑎 = 𝑎 or 𝑎 = 𝑎𝑁 . Hence, it implies that 𝑉 ∗

0,2
(𝑠) = 𝐻 − 1. However, 𝑉 ∗

0,1
(𝑠) = 𝐻−1

2 . Therefore, we
can see that ‖‖

‖

𝑉 ∗
0,1

− 𝑉 ∗
0,2

‖

‖

‖∞
= 𝐻−1

2 . Using the same proof in Section 5.2 in (Chen & Wang, 2017), we can know
that, to achieve 𝐻−1

4 -optimal 𝑉0 with high probability, any algorithm must distinguish 1 from 2, requiring to search
for two discrepancies in an array of size |𝑈 × 𝑈 × 𝐵| = Ω(𝑆2𝐴) by quering the classical oracle 𝑂. Therefore,
given the classical oracle 𝑂, the classical lower bound of query complexity for computing an 𝜖-optimal 𝑉0 for the time-
independent and finite-horizon MDP is Ω(𝑆2𝐴) for 𝜖 ∈ (0, 𝐻−1

4). This implies the classical lower bound of query complexity
for obtaining an 𝜖-optimal policy or 𝜖-optimal V-value functions for the time-dependent and finite-horizon MDP is Ω(𝑆2𝐴).

A.3. Correctness, Complexity and Qubit Cost of QVI-1 (Algorithm 1)

A.3.1. CORRECTNESS OF QVI-1 (PROOF OF THEOREM 3.5)
Proof. First, we consider the failure probability of the algorithm to achieve above goal. Every QMS is performed with
maximum failure probability 𝜁 = 𝛿∕(𝑆𝐻) and QMS is called 𝑆𝐻 times when running Algorithm 1 one time. By the union
bound, the probability that there exists an incorrect output is at most 𝛿.
Now, we assume the ideal scenario when QMS is always successful to find the action 𝑎∗ = argmax𝑎∈ �̂�ℎ,𝑠(𝑎), i.e.,
�̂�(𝑠, ℎ) = argmax𝑎∈ �̂�ℎ,𝑠(𝑎). Note that we assume 𝑉𝐻 (𝑠) = 0 for all 𝑠 ∈ . Then, we have �̂�𝐻−1,𝑠(𝑎) = 𝑟𝐻−1(𝑠, 𝑎) for
any policy 𝜋, indicating that �̂�𝐻−1,𝑠(𝑎) = 𝑄∗

𝐻−1(𝑠, 𝑎) = 𝑄�̂�𝐻−1(𝑠, 𝑎).

13

Quantum Algorithms for Finite-horizon Markov Decision Processes

Assume that with our policy �̂�(𝑠, ℎ) = argmax𝑎∈ �̂�ℎ,𝑠(𝑎) for all 𝑠 ∈ , ℎ ∈ [𝐻], we have �̂�ℎ,𝑠(𝑎) = 𝑄∗
ℎ(𝑠, 𝑎) = 𝑄�̂�ℎ(𝑠, 𝑎)for all 𝑠 ∈ , 𝑎 ∈ , ℎ ∈ [𝐻]. Besides, we define �̂�ℎ(𝑎|𝑠) as the probability that the agent choose action 𝑎 in the

state 𝑠 at time ℎ. Note that �̂�ℎ(𝑎|𝑠) = 1 if 𝑎 = �̂�(𝑠, ℎ) and �̂�ℎ(𝑎|𝑠) = 0 otherwise. By Bellman equations, we have
𝑉 �̂�
ℎ (𝑠) =

∑

𝑎∈𝑄
�̂�
ℎ(𝑠, 𝑎)�̂�ℎ(𝑎|𝑠) and 𝑄�̂�ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + 𝑃 T

ℎ|𝑠,𝑎𝑉
�̂�
ℎ+1. Then, we can know that, for all 𝑠 ∈ and ℎ ∈ [𝐻],

𝑉 ∗
ℎ (𝑠) = max

�̂�ℎ
max

�̂�ℎ+1⋯�̂�𝐻−1

∑

𝑎∈
𝑄�̂�ℎ(𝑠, 𝑎)�̂�ℎ(𝑎|𝑠)

= max
�̂�ℎ

∑

𝑎∈
𝑄∗
ℎ(𝑠, 𝑎)�̂�ℎ(𝑎|𝑠)

= 𝑄∗
ℎ
(

𝑠, �̂�(𝑠, ℎ)
)

= �̂�ℎ,𝑠
(

�̂�(𝑠, ℎ)
)

= 𝑉ℎ(𝑠).

(15)

Besides, since 𝑄∗
ℎ(𝑠, �̂�(𝑠, ℎ)) = 𝑄�̂�ℎ(𝑠, �̂�(𝑠, ℎ)) by the assumption, then 𝑉 ∗

ℎ (𝑠) = 𝑉 �̂�
ℎ (𝑠) for all 𝑠 ∈ and ℎ ∈ [𝐻]. Similarly,

assume that with our policy �̂�(𝑠, ℎ) = argmax𝑎∈ �̂�ℎ,𝑠(𝑎) for all 𝑠 ∈ , ℎ ∈ [𝐻], we have 𝑉ℎ(𝑠) = 𝑉 ∗
ℎ (𝑠) = 𝑉 �̂�

ℎ (𝑠) for all
𝑠 ∈ , ℎ ∈ [𝐻]. Then, we have

𝑄∗
ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + max

𝜋

∑

𝑠′∈
𝑃ℎ|𝑠,𝑎(𝑠′)𝑉 𝜋

ℎ+1(𝑠
′)

= 𝑟ℎ(𝑠, 𝑎) +
∑

𝑠′∈
𝑃ℎ|𝑠,𝑎(𝑠′)𝑉 ∗

ℎ+1(𝑠
′)

= 𝑟ℎ(𝑠, 𝑎) +
∑

𝑠′∈
𝑃ℎ|𝑠,𝑎(𝑠′)𝑉ℎ+1(𝑠′)

= �̂�ℎ,𝑠(𝑎).

(16)

Note that we also have 𝑉ℎ = 𝑉 �̂�
ℎ for all ℎ ∈ [𝐻]. Then, it also holds that 𝑄∗

ℎ = 𝑟ℎ + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 = 𝑟ℎ + 𝑃 T

ℎ|𝑠,𝑎𝑉
�̂�
ℎ+1 = 𝑄�̂�ℎ

Since �̂�𝐻−1,𝑠(𝑎) = 𝑄∗
𝐻−1(𝑠, 𝑎) = 𝑄�̂�𝐻−1(𝑠, 𝑎) for all 𝑠 ∈ , 𝑎 ∈ , then we can know that 𝑉𝐻−1(𝑠) = 𝑉 ∗

𝐻−1(𝑠) = 𝑉 �̂�
𝐻−1(𝑠)

for all 𝑠 ∈ . Furthermore, since 𝑉𝐻−1(𝑠) = 𝑉 ∗
𝐻−1(𝑠) = 𝑉 �̂�

𝐻−1(𝑠) holds for all 𝑠 ∈ , then we can deduce that
�̂�𝐻−2,𝑠(𝑎) = 𝑄∗

𝐻−2(𝑠, 𝑎) = 𝑄�̂�𝐻−2(𝑠, 𝑎) for all 𝑠 ∈ and 𝑎 ∈ . In the end, we can conclude that 𝑉0(𝑠) = 𝑉 ∗
0 (𝑠) = 𝑉 �̂�

0 (𝑠)
for all 𝑠 ∈ which implies �̂� is an optimal policy.

A.3.2. COMPLEXITY OF QVI-1 (PROOF OF THEOREM 3.6)
Proof. We first assume that all QMS are successful to find the optimal actions, up to the specified error, because the
probability that this does not hold is at most 𝛿. Let 𝐶 be the complexity of QVI-1(, 𝛿) as if all QMS are carried out with
maximum failure probabilities set to constant. Then, since the actual maximum failure probabilities are set to 𝜁 = 𝛿∕(𝑆𝐻),
the actual complexity of QVI-1(, 𝛿) is

𝑂
(

𝐶 log(𝑆𝐻∕𝛿)
)

. (17)
Now, we check each line of QVI-1(, 𝛿) to bound 𝐶 .
In line 4, we encode the vector 𝑉ℎ+1 to an oracle 𝐵𝑉ℎ+1 . This process does not need to query 𝑂 and only needs to access
the classical vector 𝑉ℎ+1. Therefore, the query complexity of 𝐵𝑉ℎ+1 in terms of 𝑂 is 𝑂(1).
In line 5, we need to construct the quantum oracle 𝐵�̂�ℎ,𝑠 with 𝑂. Since we need to obtain |𝑃ℎ|𝑠,𝑎(𝑠′)⟩ for all 𝑠′ ∈
and calculate the weighted sum |

∑

𝑠′∈ 𝑃ℎ|𝑠,𝑎(𝑠′)𝑉ℎ+1(𝑠′)⟩, it requires 𝑂(𝑆) query cost of the oracle 𝑂. Note that the
quantum addition and quantum multiplication can be performed by various quantum circuits, such as quantum Fourier
transform techniques (Ruiz-Perez & Garcia-Escartin, 2017; Draper, 2000). Therefore, the query complexity of 𝐵�̂�ℎ,𝑠 in
terms of 𝑂 is 𝑂(𝑆).
In line 6, we can use quantum maximum searching algorithm QMS in Theorem 3.4, resulting in a query cost of order
𝑂
(
√

𝐴
) to the oracle 𝐵�̂�ℎ,𝑠 for all 𝑠 ∈ in each loop ℎ ∈ [𝐻].

14

Quantum Algorithms for Finite-horizon Markov Decision Processes

Therefore, it induces an overall query cost of 𝐶 = 𝑂
(

𝑆2
√

𝐴𝐻
) to the oracle 𝑂. Combining with (17), the overall

quantum query complexity of QVI-1(, 𝛿) in terms of 𝑂 is

𝑂
(

𝑆2
√

𝐴𝐻 log(𝑆𝐻∕𝛿)
)

. (18)

A.3.3. ANALYSIS ON THE COST OF QUBIT RESOURCES
Considering that qubits are still scarce resources in a quantum computer, it is necessary to minimize the qubits resources
required in a quantum algorithm. Note that the line 5 of Algorithm 1 is the main source of consuming qubits in the whole
algorithm. Constructing the oracle 𝐵�̂�ℎ,𝑠 for all 𝑠 ∈ and ℎ ∈ [𝐻] requires a large number of auxiliary qubits. This is
because the process involves storing information about the vector 𝑉ℎ+1 ∈ ℝ𝑆 and the transition probabilities 𝑃ℎ|𝑠,𝑎(𝑠′) for
all 𝑠′ ∈ , which are obtained by querying the quantum oracles 𝐵𝑉ℎ+1 and 𝑂. After encoding the classical information
into qubits, we need to compute the weighted sum ∑

𝑠′∈ 𝑃ℎ|𝑠,𝑎(𝑠′)𝑉ℎ+1(𝑠′). This process requires (non-modular) quantum
adder(Ruiz-Perez & Garcia-Escartin, 2017; Draper, 2000; Vedral et al., 1996) and (non-modular) quantum multiplier (Ruiz-
Perez & Garcia-Escartin, 2017; Vedral et al., 1996) to compute the additions and multiplications with additional auxiliary
qubits. Specifically, with the fixed-point representation, (Ruiz-Perez & Garcia-Escartin, 2017) constructs quantum circuits
of a non-modular quantum adder 𝑈qAdd ∶ |Bi[𝑎]⟩𝑞 |Bi[𝑏]⟩𝑞+1 ↦ |Bi[𝑎]⟩𝑞 |Bi[𝑎] + Bi[𝑏]⟩𝑞+1 and a non-modular quantum
multiplier 𝑈qMul ∶ |Bi[𝑎]⟩𝑞 |Bi[𝑏]⟩𝑞 |0⟩2𝑞 ↦ |Bi[𝑎]⟩𝑞 |Bi[𝑏]⟩𝑞 |Bi[𝑎]Bi[𝑏]⟩2𝑞 , which can compute the non-modular sum and
multiplication of two non-negative real numbers 𝑎 and 𝑏. We refer readers to (Wang et al., 2024) for a comprehensive
overview of the existing work on quantum arithmetic circuits.
Inspired by the quantum circuit for computing the controlled weighted sum proposed in Section 8 in (Ruiz-Perez & Garcia-
Escartin, 2017), we design a QFT-based circuit to reduce the qubits consumption in constructing the oracle 𝐵�̂�ℎ,𝑠 . We first
prepare the following qubits

|𝑎⟩ |𝑠⟩ |ℎ⟩ |0⟩⊗4𝑞+𝑞𝑠+1 , (19)
where 𝑞𝑠 = ⌈log2(𝑆)⌉. Then we apply the rotation matrix 𝑈𝑠′ to transform the |0⟩ to the target state |𝑠′⟩. Since we encode
the state space into orthonormal bases, then 𝑈𝑠′ is unitary. Hence, it returns the output state

|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |0⟩⊗4𝑞+1 . (20)
By applying the unitary oracle 𝑂 and 𝐵𝑉ℎ+1 , we can obtain the following state

|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |Bi[𝑉ℎ+1(𝑠′)]⟩ |0⟩⊗𝑞+1 . (21)
Then we compute the quantum Fourier transform of |0⟩⊗𝑞+1 where

QFT |0⟩⊗𝑞+1 = 1
√

2𝑞+1

2𝑞+1−1
∑

𝑘=0
𝑒𝑖

2𝜋0𝑘
2𝑞+1

|𝑘⟩ = |𝜙(0)⟩ , (22)

we obtain the output state
|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |Bi[𝑉ℎ+1(𝑠′)]⟩ |𝜙(0)⟩ . (23)

Then we apply the multiplication block 𝑈2−𝑝𝑃ℎ|𝑠,𝑎(𝑠′)𝑉ℎ+1(𝑠′)
defined in the Fig. 4 in (Ruiz-Perez & Garcia-Escartin, 2017) and

obtain the output state
|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |Bi[𝑉ℎ+1(𝑠′)]⟩ |𝜙(0 + Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)])⟩ . (24)

By applying the unitary matrix 𝐵†
𝑉ℎ+1

, 𝑂†
 and 𝑈†

𝑠′ in sequence, we can undo the operations on auxiliary qubits and obtain
the following state

|𝑎⟩ |𝑠⟩ |ℎ⟩ |0⟩⊗3𝑞+𝑞𝑠
|𝜙(0 + Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)])⟩ . (25)

15

Quantum Algorithms for Finite-horizon Markov Decision Processes

We can repeat the above operations for all 𝑠′ ∈ and obtain
|𝑎⟩ |𝑠⟩ |ℎ⟩ |0⟩⊗3𝑞+𝑞𝑠

|𝜙(0 +
∑

𝑠′∈
Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)])⟩ . (26)

By applying the inverse quantum Fourier transform on the state |𝜙(0 +
∑

𝑠′∈ Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)])⟩, we can obtain
|𝑎⟩ |𝑠⟩ |ℎ⟩ |0⟩⊗3𝑞+𝑞𝑠

|

∑

𝑠′∈
Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)]⟩ . (27)

Since ∑

𝑠′∈ 𝑃ℎ|𝑠,𝑎(𝑠′) = 1 and 𝑃ℎ|𝑠,𝑎(𝑠′) ∈ [0, 1] for all 𝑠′ ∈ , there is no overflow when computing the weighted sum.
Hence, the weighted sum is non-modular. Further, we apply the rotation matrix 𝑈𝑠′ and the oracle 𝑂 in sequence to
obtain the state

|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |0⟩⊗𝑞 |
∑

𝑠′∈
Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)]⟩ . (28)

Then we apply the quantum adder 𝑈qAdd to obtain the state
|𝑎⟩ |𝑠⟩ |ℎ⟩ |𝑠′⟩ |Bi[𝑟ℎ(𝑠, 𝑎)]⟩ |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |0⟩⊗𝑞 |Bi[𝑟ℎ(𝑠, 𝑎)] +

∑

𝑠′∈
Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)]⟩ . (29)

Since there are 𝑞 + 1 qubits in the last register in (28), then the sum of Bi[𝑟ℎ(𝑠, 𝑎)] and ∑

𝑠′∈ Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)] has
no overflow and the result is non-modular. Therefore, by applying 𝑂†

 and 𝑈†
𝑠′ in sequence, we can obtain the state

|𝑎⟩ |𝑠⟩ |ℎ⟩ |0⟩⊗3𝑞+𝑞𝑠
|Bi[𝑟ℎ(𝑠, 𝑎)] +

∑

𝑠′∈
Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]Bi[𝑉ℎ+1(𝑠′)]⟩ . (30)

Remark: Since the above operations are unitary, then the oracle 𝐵�̂�ℎ,𝑠 constructed in this way is unitary. Instead of preparing
|Bi[𝑃ℎ|𝑠,𝑎(1)]⟩ |Bi[𝑉ℎ+1(1)]⟩⋯ |Bi[𝑃ℎ|𝑠,𝑎(𝑆)]⟩ |Bi[𝑉ℎ+1(𝑆)]⟩ |0⟩⊗𝑞+1 and computing the weighted sum on the last register,
which requires 𝑞(2𝑆 + 1) + 1 qubits as shown in Section 8 in (Ruiz-Perez & Garcia-Escartin, 2017), our method significantly
reduces the number of required qubits, needing only 3𝑞 + 1 qubits to compute the weighted sum. The main idea is to reuse
the 2𝑞 auxiliary qubits |Bi[𝑃ℎ|𝑠,𝑎(𝑠′)]⟩ |Bi[𝑉ℎ+1(𝑠′)]⟩ by leveraging the invertible property of the unitary matrices 𝑂 and
𝐵𝑉ℎ+1 for all ℎ ∈ [𝐻]. However, this comes at the cost of an additional 𝑆 queries to 𝑂†

. We summarize the above results
in creating the oracle 𝐵�̂�ℎ,𝑠 in the following Theorem A.1.
Theorem A.1 (Number of Qubits Required for the Construction of Oracle 𝐵�̂�ℎ,𝑠). The total number of qubits required
for creating a quantum oracle 𝐵�̂�ℎ,𝑠 for each ℎ ∈ [𝐻] and 𝑠 ∈ in Algorithm 1 is 4𝑞 + 2𝑞𝑠 + 𝑞ℎ + 𝑞𝑎 + 1, among which
3𝑞 + 2𝑞𝑠 + 𝑞ℎ are auxiliary qubits, not counting the auxiliary qubits necessary to implement the oracle 𝑂 and 𝐵𝑉ℎ+1 for
all ℎ ∈ [𝐻], where 𝑞𝑠 = ⌈log2 𝑆⌉, 𝑞𝑎 = ⌈log2 𝐴⌉ and 𝑞ℎ = ⌈log2𝐻⌉.
Theorem A.2 (Number of Qubits Required for QVI-1 (Algorithm 1)). The total number of qubits required for Algorithm 1
is 11𝑞 + 4𝑞𝑠 + 2𝑞ℎ + 4𝑞𝑎 + 2, not counting the auxiliary qubits necessary to implement the oracle 𝑂 and 𝐵𝑉ℎ+1 for all
ℎ ∈ [𝐻], where 𝑞𝑠 = ⌈log2 𝑆⌉, 𝑞𝑎 = ⌈log2 𝐴⌉ and 𝑞ℎ = ⌈log2𝐻⌉.

Proof. In line 6 of Algorithm 1, we apply QMS algorithm to achieve a quadratic speedup in searching the optimal action
which achieves maximum value of the vector �̂�ℎ,𝑠 for all 𝑠 ∈ and ℎ ∈ [𝐻]. In this QMS algorithm, it requires an oracle
𝑂QMS to mark the indexes 𝑎 of the vector �̂�ℎ,𝑠 which satisfy �̂�ℎ,𝑠(𝑎) > �̂�ℎ,𝑠(𝑎′), where 𝑎′ is a threshold index, by flipping
the phase of the |𝑎⟩. Therefore, the oracle 𝑂QMS is defined as

𝑂QMS ∶ |𝑎⟩ |𝑎′⟩ |−⟩ ↦ (−1)𝑓𝑎′ (𝑎) |𝑎⟩ |𝑎′⟩ |−⟩ , (31)
where 𝑓𝑎′ (𝑎) = 1 if �̂�ℎ,𝑠(𝑎) > �̂�ℎ,𝑠(𝑎′) and 𝑓𝑎′ (𝑎) = 0 otherwise, and |−⟩ = 1

√

2
(|0⟩ − |1⟩). Figure 8 in (Oliveira & Ramos,

2007) showed a way to construct the corresponding unitary quantum circuit of the oracle 𝑂QMS based on the quantum bit
string comparator (QBSC) 𝑈QBSC. Given two real number 𝑎 and 𝑏, 𝑈QBSC works as

𝑈QBSC ∶ |Bi[𝑎]⟩ |Bi[𝑏]⟩ |0⟩⊗3(𝑞−1)
|0⟩ |0⟩ ↦ |Bi[𝑎]⟩ |Bi[𝑏]⟩ |𝜓⟩ |𝑥⟩ |𝑦⟩ , (32)

16

Quantum Algorithms for Finite-horizon Markov Decision Processes

where |𝜓⟩ is a 3(𝑞 − 1)-qubit garbage state and the last two qubits store the comparison result. Specifically, we define that if
𝑎 = 𝑏 then 𝑥 = 𝑦 = 0, if 𝑎 > 𝑏 then 𝑥 = 1 and 𝑦 = 0, and if 𝑎 < 𝑏 then 𝑥 = 0 and 𝑦 = 1. We restate the construction process
under the background of our algorithm here. The first step to construct 𝑂QMS is to prepare the following qubits

|𝑎⟩ |0⟩⊗𝑞 |𝑎′⟩ |0⟩⊗𝑞 |0⟩⊗3(𝑞−1)
|0⟩ |0⟩ |−⟩ . (33)

Then we apply 𝐵�̂�ℎ,𝑠 created in line 5 to the first and third register and obtain the following state

|𝑎⟩ |Bi[�̂�ℎ,𝑠(𝑎)]⟩ |𝑎′⟩ |Bi[�̂�ℎ,𝑠(𝑎′)]⟩ |0⟩⊗3(𝑞−1)
|0⟩ |0⟩ |−⟩ . (34)

Then we apply 𝑈QBSC to compare �̂�ℎ,𝑠(𝑎) and �̂�ℎ,𝑠(𝑎′)

|𝑎⟩ |Bi[�̂�ℎ,𝑠(𝑎)]⟩ |𝑎′⟩ |Bi[�̂�ℎ,𝑠(𝑎′)]⟩ |𝜓⟩ |𝑥⟩ |𝑦⟩ |−⟩ . (35)
Further, we apply the controlled unitary matrix 𝑈𝑐 = (𝐼 ⊗ 𝜎1 ⊗ 𝐼)𝑇 (𝐼 ⊗ 𝜎1 ⊗ 𝐼) to the last three qubits and obtain the
following state

(−1)𝑥(1−𝑦) |𝑎⟩ |Bi[�̂�ℎ,𝑠(𝑎)]⟩ |𝑎′⟩ |Bi[�̂�ℎ,𝑠(𝑎′)]⟩ |𝜓⟩ |𝑥⟩ |𝑦⟩ |−⟩ , (36)
where 𝜎1 is the Pauli-X gate and 𝑇 is the Tofolli gate. By applying 𝑈†

QBSC and 𝐵†
�̂�ℎ,𝑠

, we can undo the operations on
|Bi[�̂�ℎ,𝑠(𝑎)]⟩ and |Bi[�̂�ℎ,𝑠(𝑎′)]⟩ and obtain the following state

(−1)𝑥(1−𝑦) |𝑎⟩ |0⟩⊗𝑞 |𝑎′⟩ |0⟩⊗𝑞 |0⟩⊗3(𝑞−1)
|0⟩ |0⟩ |−⟩ . (37)

From the above steps, we can see that the construction of the 𝑂QMS requires one query to 𝐵�̂�ℎ,𝑠 and one query to 𝐵†
�̂�ℎ,𝑠as shown in (34) and (37). By Theorem A.1, we know that it requires 4𝑞 + 2𝑞𝑠 + 𝑞ℎ + 𝑞𝑎 + 1 qubits to construct the

oracle 𝐵�̂�ℎ,𝑠 . Then it requires 2(4𝑞 + 2𝑞𝑠 + 𝑞ℎ + 𝑞𝑎 + 1) + 2𝑞𝑎 + 3(𝑞 − 1) + 3 = 11𝑞 + 4𝑞𝑠 + 2𝑞ℎ + 4𝑞𝑎 + 2 qubits to con-
struct the oracle𝑂QMS, among which 2(4𝑞+2𝑞𝑠+𝑞ℎ+𝑞𝑎+1)+3(𝑞−1)+2 = 11𝑞+4𝑞𝑠+2𝑞ℎ+2𝑞𝑎+1 are auxiliary qubits.

A.4. Correctness and Complexity of QVI-2 (Algorithm 2)

A.4.1. PROOF OF THEOREM A.3
Theorem A.3. Let Ω be a finite set with cardinality 𝑁 , 𝑝 = (𝑝𝑥)𝑥∈Ω a discrete probability distribution over Ω. Suppose
we have access to a binary oracle 𝐵𝑝 ∶ |𝑖⟩ |0⟩ ↦ |𝑖⟩ |Bi[𝑝𝑖]⟩. By using 𝑂(1) invocations of the oracle 𝐵𝑝 and 𝐵†

𝑝 , we can
implement a unitary oracle �̂�𝑝 ∶ ℂ𝑁 ⊗ ℂ2 → ℂ𝑁 ⊗ ℂ2 satisfying

�̂�𝑝 ∶ |𝑖⟩ |0⟩ ↦ 1
√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ +
√

𝑁 − 1
𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖
𝑁 − 1

|𝑖⟩ |1⟩ . (38)

Proof. First, we need to create the uniform superposition by applying Hadamard gates and query oracle 𝐵𝑝

|𝑖⟩ |0⟩
𝐻⊗𝑛

→
1

√

𝑁

𝑁
∑

𝑖=1
|𝑖⟩ |0⟩

𝐵𝑝
→

1
√

𝑁

𝑁
∑

𝑖=1
|𝑖⟩ |Bi[𝑝𝑖]⟩ . (39)

Second, we add a single auxiliary qubit and perform a controlled rotation 𝑅𝑝 based on the value stored in |Bi[𝑝𝑖]⟩ defined as
𝑅𝑝 ∶ |Bi[𝑝𝑖]⟩ |0⟩ ↦ |Bi[𝑝𝑖]⟩ (√𝑝𝑖 |0⟩ +

√

1 − 𝑝𝑖 |1⟩):

𝐼⊗𝑅𝑝
→

1
√

𝑁

𝑁
∑

𝑖=1
|𝑖⟩ |Bi[𝑝𝑖]⟩

(√

𝑝𝑖 |0⟩ +
√

1 − 𝑝𝑖 |1⟩
)

. (40)

17

Quantum Algorithms for Finite-horizon Markov Decision Processes

Third, we undo the oracle 𝐵𝑝 and drop the auxilliary qubit |0⟩ in Eq. (𝑎) to obtain the desired result.

𝐵†
𝑝

→
1

√

𝑁

𝑁
∑

𝑖=1
|𝑖⟩ |0⟩ (

√

𝑝𝑖 |0⟩ +
√

1 − 𝑝𝑖 |1⟩)

(𝑎)
= 1

√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ +
1

√

𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖 |𝑖⟩ |1⟩

= 1
√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ +
√

𝑁 − 1
𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖
𝑁 − 1

|𝑖⟩ |1⟩ .

(41)

Lemma A.4 (Powering lemma (Jerrum et al., 1986)). Let be a classical or quantum algorithm designed to estimate a
quantity 𝜇, where its output �̃� satisfies |𝜇 − �̃�| ≤ 𝜖 with probability at least 1 − 𝛾 , for some fixed 𝛾 < 1∕2. Then, for any
𝛿 > 0, by repeating 𝑂(log(1∕𝛿)) times and taking the median of the outputs, one can obtain an estimate �̂� such that
|�̂� − 𝜇| < 𝜖 with probability at least 1 − 𝛿.
Theorem A.5 (Amplitude estimation (Brassard et al., 2002)). The amplitude estimation algorithm is designed to estimate
the amplitude 𝑎 = ⟨𝜓|𝑃 |𝜓⟩ ∈ [0, 1] of a quantum state |𝜓⟩. It takes the following inputs, a quantum state |𝜓⟩, two unitary
operators: 𝑈 = 2 |𝜓⟩ ⟨𝜓|− 𝐼 and 𝑉 = 𝐼 − 2𝑃 , where 𝑃 is some suitable projector, and an integer 𝑇 , which determines the
number of repetitions. The algorithm outputs an estimate �̃� ∈ [0, 1] for the amplitude 𝑎. The estimate satisfies the error
bound:

|�̃� − 𝑎| ≤ 2𝜋

√

𝑎(1 − 𝑎)
𝑇

+ 𝜋2

𝑇 2
, (42)

with a success probability of at least 8∕𝜋2. To achieve this, the unitary operators 𝑈 and 𝑉 are applied 𝑇 times each.

A.4.2. COMPLETE VERSION OF QUANTUM MEAN ESTIMATION WITH BINARY ORACLE QMEBO

In Section 3, we provide a simplified version of QMEBO by hiding the details of some auxiliary states and operators. For
clarity, we provide a complete version in Algorithm 7. Based the Algorithm 7, the auxiliary state in line 5 of QMEBO in
Algorithm 3 should be

|Φ(1)
⟩ = 1

√

𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖 |𝑖⟩ |1⟩ |Bi[𝑓𝑖]⟩ |0⟩ , (43)

and the auxiliary state in line 6 satisfies

|Φ(2)
⟩ = 1

√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖(1 − 𝑓𝑖) |𝑖⟩ |001⟩ +
1

√

𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖 |𝑖⟩ |1⟩ |0⟩
(
√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩
) (44)

A.4.3. PROOF OF THEOREM 3.7
Proof. We first show the correctness of Algorithm 3. Note that we obtain

|𝜓 (2)
⟩ = 1

√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ |0⟩
(
√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩
)

+
√

𝑁 − 1
𝑁

|Φ⟩ , (45)

where |Φ⟩ =
∑𝑁
𝑖=1

√

1−𝑝𝑖
𝑁−1 |𝑖⟩ |1⟩ |0⟩ (

√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩). Besides, we have

⟨𝜓 (2)
|𝑃 |𝜓 (2)

⟩ = 1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖𝑓𝑖 =

1
𝑁
𝐸[𝑓 (𝑥)|𝑥 ∼ 𝑝] = 1

𝑁
𝜇, (46)

18

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 7 Quantum Mean Estimation with Binary Oracles QMEBO𝛿(𝑝T𝑓, 𝐵𝑝, 𝐵𝑓 , 𝜖)
1: Require: 𝐵𝑝 encoding a probability distribution 𝑝 = (𝑝𝑖)𝑖∈Ω on a finite set Ω with cardinality𝑁 , 𝐵𝑓 encoding a function
𝑓 = (𝑓𝑖)𝑖∈Ω where 𝑓𝑖 ∈ [0, 1], maximum error 𝜖, maximum failure probability 𝛿 ∈ (0, 1).

2: Output: �̂� satisfying |�̂� − 𝑝T𝑓 | ≤ 𝜖

3: Initialize: 𝐾 = 𝑂
(

log(1∕𝛿)
), 𝑇 = 𝑂

(
√

𝑁
𝜖 +

√

𝑁
𝜖

)

4: for 𝑘 ∈ [𝐾] do
5: create a quantum oracle �̂�𝑝 with 𝐵𝑝 and obtain the following state |𝜓 (0)

⟩ = �̂�𝑝 |0⟩ |0⟩:
|𝜓 (0)

⟩ = �̂�𝑝 |0⟩ |0⟩ =
1

√

𝑁

∑𝑁
𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ +
√

𝑁−1
𝑁

∑𝑁
𝑖=1

√

1−𝑝𝑖
𝑁−1 |𝑖⟩ |1⟩.

6: Attach |0⟩⊗(𝑞+1) qubits on |𝜓 (0)
⟩ and apply 𝐵𝑓 on |0⟩⊗𝑞 to obtain |𝜓 (1)

⟩ = 𝐵𝑓 |𝜓 (0)
⟩ |0⟩⊗(𝑞+1):

|𝜓 (1)
⟩ = 𝐵𝑓 |𝜓

(0)
⟩ |0⟩⊗𝑞+1

= 1
√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ |Bi[𝑓𝑖]⟩ |0⟩ + 1
√

𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖 |𝑖⟩ |1⟩ |Bi[𝑓𝑖]⟩ |0⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=|Φ(1)
⟩

.

7: Apply the controlled rotation 𝑅𝑓 defined by 𝑅𝑓 ∶ |Bi[𝑓𝑖]⟩ |0⟩ ↦ |Bi[𝑓𝑖]⟩ (
√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩) and undo the
oracle 𝐵𝑓 :
|𝜓 (2)

⟩ = (𝐵†
𝑓 ⊗ 𝐼)(𝐼 ⊗ 𝑅𝑓) |𝜓 (1)

⟩

= 1
√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖 |𝑖⟩ |0⟩ |0⟩
(
√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩
)

+ 1
√

𝑁

𝑁
∑

𝑖=1

√

1 − 𝑝𝑖 |𝑖⟩ |1⟩ |0⟩
(
√

𝑓𝑖 |0⟩ +
√

1 − 𝑓𝑖 |1⟩
)

= 1
√

𝑁

𝑁
∑

𝑖=1

√

𝑝𝑖𝑓𝑖 |𝑖⟩ |000⟩ + |Φ(2)
⟩ .

8: Apply 𝑇 iterations of amplitude estimation by setting |𝜓⟩ = |𝜓 (2)
⟩ , 𝑈 = 2 |𝜓⟩ ⟨𝜓| − 𝐼 and 𝑃 = 𝐼 ⊗ |000⟩ ⟨000| to

obtain 𝜇𝑘
9: end for

10: Return: �̂� = 𝑁 ⋅ Median({𝜇𝑘}𝑘∈[𝐾])

19

Quantum Algorithms for Finite-horizon Markov Decision Processes

where 𝑃 = 𝐼 ⊗ |000⟩ ⟨000|. Hence, by Theorem A.5, we know that we can obtain 𝜇𝑘 in each loop 𝑘 ∈ [𝐾] such that

|

|

|

|

|

𝜇𝑘 −
1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖𝑓𝑖

|

|

|

|

|

≤ 2𝜋

√

𝜇
𝑁

(

1 − 𝜇
𝑁

)

𝑇
+ 𝜋2

𝑇 2
, (47)

with probability at least 8∕𝜋2. Let �̂� = 𝑁 ⋅ �̃�, where �̃� = Median(𝜇0,… , 𝜇𝐾−1). By Lemma A.4, we know that �̃� = �̂�∕𝑁
satisfies

|

|

|

|

|

�̂�
𝑁

− 1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖𝑓𝑖

|

|

|

|

|

≤ 2𝜋

√

𝜇
𝑁

(

1 − 𝜇
𝑁

)

𝑇
+ 𝜋2

𝑇 2
, (48)

with probability at least 1− 𝛿 for any 𝛿 > 0. We proceed to focus on the complexity cost of Algorithm 3. Note that 𝜇 ∈ [0, 1]
because 𝑓𝑖 ∈ [0, 1] for all 𝑖 = 1,… , 𝑁 . Hence, we further have that

2𝜋

√

𝜇
𝑁

(

1 − 𝜇
𝑁

)

𝑇
+ 𝜋2

𝑇 2
< 𝜋2

(

1
√

𝑁𝑇
+ 1
𝑇 2

)

, (49)

In order to let �̂�∕𝑁 be an 𝜖∕𝑁 approximation of 1
𝑁
∑𝑁
𝑖=1 𝑝𝑖𝑓𝑖, it suffices to let

𝜋2
(

1
√

𝑁𝑇
+ 1
𝑇 2

)

≤ 𝜖
𝑁
, (50)

which is equivalent to 𝜖𝑇 2−𝜋2
√

𝑁𝑇 −𝜋2𝑁 ≥ 0. Then it suffices to let 𝑇 = 𝑂
(
√

𝑁
𝜖 +

√

𝑁
𝜖

)

such that ||
|

�̂�
𝑁 − 1

𝑁
∑𝑁
𝑖=1 𝑝𝑖𝑓𝑖

|

|

|

≤

𝜖∕𝑁 . This implies that ||
|

�̂� −
∑𝑁
𝑖=1 𝑝𝑖𝑓𝑖

|

|

|

≤ 𝜖.
By Theorem A.3, we know that the query complexity of �̂�𝑝 in terms of 𝐵𝑝 is 𝑂(1). Therefore, Algorithm 3 calls 𝐵𝑝 and 𝐵𝑓
𝑂
(

(
√

𝑁
𝜖 +

√

𝑁
𝜖

)

log(1∕𝛿)
)

times each.

A.4.4. PROOF OF LEMMA A.6
Lemma A.6. QVI-2(, 𝜖, 𝛿) holds that ℎ

�̂� (𝑉ℎ+1) −
𝜖
𝐻 ≤ 𝑉ℎ ≤ ℎ

�̂� (𝑉ℎ+1) for all ℎ ∈ [𝐻] with a success probability at
least 1 − 𝛿.

Proof. The analysis on success probability is the same as Theorem 3.8 and hence we omit it here. For all 𝑠 ∈ , 𝑎 ∈ and
ℎ ∈ [𝐻] we have that

|

|

|

|

|

𝑧ℎ,𝑠(𝑎)
𝐻

+ 𝜖
2𝐻2

− 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

|

|

≤ 𝜖
2𝐻2

. (51)

This implies that
|

|

|

𝑧ℎ,𝑠(𝑎) +
𝜖
2𝐻

− 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

≤ 𝜖
2𝐻

, (52)
and

𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 −

𝜖
𝐻

≤ 𝑧ℎ,𝑠(𝑎) ≤ 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1. (53)

Now, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻], we let
�̃�ℎ(𝑠, 𝑎) ∶= 𝑟ℎ(𝑠, 𝑎) + 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1. (54)
Note that ℎ

�̂� (𝑉ℎ+1) = �̃�ℎ
(

𝑠, �̂�(𝑠, ℎ)
)

= 𝑟ℎ(𝑠, �̂�(𝑠, ℎ)) + 𝑃 𝑇ℎ|𝑠,�̂�(𝑠,ℎ)𝑉ℎ+1. Therefore, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻] we
have

�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) = max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0} −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

. (55)

20

Quantum Algorithms for Finite-horizon Markov Decision Processes

On one hand, since 𝑧ℎ,𝑠(𝑎) ≤ 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 and 𝑉ℎ+1 ≥ 0, then we have

�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) ≤ max
{

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1, 0

}

−
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

= 𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 −

(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

= 0.

(56)

On the other hand, we also have
�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) = max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0} −

(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

≥ 𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎) −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

= 𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

≥ − 𝜖
𝐻
.

(57)

The last line comes from Eq. (53). In summary, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻], we have
− 𝜖
𝐻

≤ �̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) ≤ 0. (58)

Hence, by letting 𝑎 = �̂�(𝑠, ℎ), we will have
− 𝜖
𝐻

≤ 𝑉ℎ − ℎ
�̂� (𝑉ℎ+1) = �̂�ℎ,𝑠

(

�̂�(𝑠, ℎ)
)

− �̃�ℎ
(

𝑠, �̂�(𝑠, ℎ)
)

≤ 0, (59)

 ℎ
�̂� (𝑉ℎ+1) −

𝜖
𝐻

≤ 𝑉ℎ ≤ ℎ
�̂� (𝑉ℎ+1). (60)

A.4.5. MONOTONICITY PROPERTY OF THE VALUE OPERATOR ASSOCIATED WITH A POLICY ℎ
𝜋 (⋅) IN DEFINITION 2.1

Suppose two vectors 𝑢 and 𝑣 satisfy 𝑢 ≤ 𝑣 ∈ ℝ , then it implies that 𝑢(𝑠) ≤ 𝑣(𝑠) for all 𝑠 ∈ . Consequently, we must have,
for any fixed policy 𝜋 and for all 𝑠 ∈ and ℎ ∈ [𝐻],

∑

𝑠′∈
𝑃ℎ|𝑠,𝜋(𝑠,ℎ)(𝑠′)𝑢(𝑠′) ≤

∑

𝑠′∈
𝑃ℎ|𝑠,𝜋(𝑠,ℎ)(𝑠′)𝑣(𝑠′). (61)

Further, we can know that
𝑟
(

𝑠, 𝜋(𝑠, ℎ)
)

+
∑

𝑠′∈
𝑃ℎ|𝑠,𝜋(𝑠,ℎ)(𝑠′)𝑢(𝑠′) ≤ 𝑟

(

𝑠, 𝜋(𝑠, ℎ)
)

+
∑

𝑠′∈
𝑃ℎ|𝑠,𝜋(𝑠,ℎ)(𝑠′)𝑣(𝑠′). (62)

By the definitions of ℎ
𝜋 (𝑢) and ℎ

𝜋 (𝑣), this implies that [ℎ
𝜋 (𝑢)]𝑠 ≤ [ℎ

𝜋 (𝑣)]𝑠 for all 𝑠 ∈ and ℎ ∈ [𝐻]. In other words,
 ℎ
𝜋 (𝑢) ≤ ℎ

𝜋 (𝑣). This implies that the operator ℎ
𝜋 is monotonically increasing for any 𝜋 and ℎ ∈ [𝐻] in the coordinate-wise

order.
A.4.6. CORRECTNESS OF QVI-2 (PROOF OF THEOREM 3.8)
Proof. We start by examining the failure probability. The approach is similar to the analysis in Theorem 3.5, except that we
must now account for quantum oracles that can fail. To address this, we use fundamental properties of unitary matrices,
particularly a quantum analog of the union bound, which states that the failure probabilities of quantum operators (unitary
matrices) combine linearly.
In line 5, since 𝐵𝑧ℎ,𝑠 is constructed using QMEBO with a failure probability 𝜁 , it is within 2𝐴𝜁 of its "ideal version."
Specifically, this means that there exists an ideal quantum oracle 𝐵ideal

𝑧ℎ,𝑠
encoding 𝐻 ̃𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 − 𝜖∕2𝐻 , where ̃𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

21

Quantum Algorithms for Finite-horizon Markov Decision Processes

satisfies ‖‖
‖

‖

̃𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 − 𝑃

T
ℎ|𝑠,𝑎𝑉ℎ+1

‖

‖

‖

‖∞
≤ 𝜖∕(2𝐻2), such that ‖‖

‖

𝐵ideal
𝑧ℎ,𝑠

− 𝐵𝑧ℎ,𝑠
‖

‖

‖op ≤ 2𝐴𝜁 . Since 𝐵�̂�ℎ,𝑠 is formed using one call
each to 𝐵𝑧ℎ,𝑠 and 𝐵†

𝑧ℎ,𝑠 , it is within 4𝐴𝜁 of its ideal counterpart 𝐵ideal
�̂�ℎ,𝑠

. By applying the quantum union bound and substituting
the definition of 𝜁 , this shows that the quantum operation executed by QMS is (𝑐√𝐴 log(1∕𝛿) ⋅ 4𝐴𝜁 = 𝛿∕𝑆𝐻)-close to
its ideal version. Consequently, the output of QMS is incorrect with a probability of at most 𝛿∕𝑆𝐻 . Given that QMS is
invoked a total of 𝑆𝐻 times, the overall failure probability is bounded by 𝛿, as ensured by the standard union bound.
In line 5, we apply QMEBO to obtain an approximate value 𝑧ℎ,𝑠(𝑎)∕𝐻 of the inner product 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1. Theorem 3.7
guarantees the output in the line 5 satisfying |𝑧ℎ,𝑠(𝑎)∕𝐻 + 𝜖∕2𝐻2−𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1| ≤ 𝜖∕2𝐻2 for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻].
This implies that |𝑧ℎ,𝑠(𝑎) − 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1| ≤ 𝜖∕𝐻 . Hence, it holds for all 𝑠 ∈ and 𝑎 ∈ in every loop ℎ ∈ [𝐻] that

|�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)| =

|

|

|

𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎) −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉

∗
ℎ+1

)

|

|

|

≤ |

|

|

𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎(𝑉

∗
ℎ+1 − 𝑉ℎ+1) − 𝑃

T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

≤ |

|

|

𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

+ |

|

|

𝑃 T
ℎ|𝑠,𝑎(𝑉

∗
ℎ+1 − 𝑉ℎ+1)

|

|

|

≤ 𝜖
𝐻

+ max
𝑠∈

|

|

|

𝑉ℎ+1(𝑠) − 𝑉 ∗
ℎ+1(𝑠)

|

|

|

= 𝜖
𝐻

+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ∗
ℎ+1

‖

‖

‖∞
.

(63)

Furthermore, we have
‖

‖

‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
=
‖

‖

‖

‖

�̂�ℎ,𝑠
(

�̂�(𝑠, ℎ)
)

− max
𝑎∈

𝑄∗
ℎ(𝑠, 𝑎)

‖

‖

‖

‖∞

=
‖

‖

‖

‖

max
𝑎∈

�̂�ℎ,𝑠(𝑎) − max
𝑎∈

𝑄∗
ℎ(𝑠, 𝑎)

‖

‖

‖

‖∞

≤
‖

‖

‖

‖

max
𝑎∈

|�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)|

‖

‖

‖

‖∞

≤ max
𝑠∈

max
𝑎∈

|

|

|

�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)

|

|

|

≤ 𝜖
𝐻

+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ∗
ℎ+1

‖

‖

‖∞
.

(64)

Since it holds that 𝑉𝐻 (𝑠) = 𝑉 ∗
𝐻 (𝑠) = 0 for all 𝑠 ∈ , we can induce that

‖

‖

‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
≤ (𝐻 − ℎ)𝜖

𝐻
+ ‖

‖

‖

𝑉𝐻 − 𝑉 ∗
𝐻
‖

‖

‖∞
=

(𝐻 − ℎ)𝜖
𝐻

. (65)

Then, we know that ‖‖
‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
≤ 𝜖 for all ℎ ∈ [𝐻]. In particular, it implies that 𝑉 ∗

ℎ (𝑠) − 𝜖 ≤ 𝑉ℎ(𝑠) for all 𝑠 ∈ and
ℎ ∈ [𝐻].
Now, we proceed to prove the 𝑉ℎ(𝑠) ≤ 𝑉 �̂�

ℎ (𝑠) for all 𝑠 ∈ and ℎ ∈ [𝐻]. By Lemma A.6, we know that 𝑉ℎ ≤ ℎ
�̂� (𝑉ℎ+1) for

all ℎ ∈ [𝐻]. Therefore, 𝑉𝐻−1(𝑠) ≤ [𝐻−1
�̂� (𝑉𝐻)]𝑠 = [𝐻−1

�̂� (0)]𝑠 = 𝑟𝐻−1(𝑠, �̂�(𝑠,𝐻 − 1)) = 𝑉 �̂�
𝐻−1(𝑠). By the monotonicity

of the operators ℎ
�̂� , where ℎ ∈ [𝐻], we have 𝑉ℎ ≤ ℎ

�̂� (𝑉ℎ+1) ≤ ℎ
�̂� (

ℎ+1
�̂� (𝑉ℎ+2)) ≤ ⋯ ≤ 𝑉 �̂�

ℎ for all ℎ ∈ [𝐻]. Due to the
definition of 𝑉 ∗

ℎ (𝑠), we must have 𝑉 ∗
ℎ (𝑠) = max𝜋∈Π 𝑉 𝜋

ℎ (𝑠) ≥ 𝑉 �̂�
ℎ (𝑠) for all 𝑠 ∈ and ℎ ∈ [𝐻].

A.4.7. COMPLEXITY OF QVI-2 (PROOF OF THEOREM 3.9)
Proof. We first assume that all QMS and QMEBO are correct, up to the specified error, because the probability that this
does not hold is at most 𝛿. Let 𝐶 be the complexity of QVI-2(, 𝜖, 𝛿) as if all QMS and QMEBO are carried out with
maximum failure probabilities set to constant. Then, since the failure probabilities are set to 𝜁 = 𝛿∕(4𝑐𝐻𝑆𝐴1.5 log(1∕𝛿)),
the actual complexity of QVI-2(, 𝜖, 𝛿) is

𝑂
(

𝐶 log
(

𝑆𝐴1.5𝐻 log(1∕𝛿)∕𝛿
)

)

= 𝑂
(

𝐶 log(𝑆𝐴1.5𝐻∕𝛿)
)

. (66)

22

Quantum Algorithms for Finite-horizon Markov Decision Processes

Now, we check each line of QVI-2(, 𝜖, 𝛿) to bound 𝐶 .
In line 4, we encode the vector 𝑉ℎ+1 = 𝑉ℎ+1∕𝐻 to an oracle 𝐵𝑉ℎ+1 . This process does not need to query 𝑂 and only
needs to access the classical vector 𝑉ℎ+1.
In line 5, we implement QMEBO to compute an estimate of 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 with error 𝜖∕2𝐻2. Besides, the correctness analysis
shows that 𝑉ℎ+1(𝑠) ≤ 𝑉 ∗

ℎ+1(𝑠) ≤ 𝐻 for all 𝑠 ∈ and the definition of �̂�ℎ,𝑠(𝑎) of QVI2 implies that 0 ≤ 𝑉ℎ(𝑠) for all 𝑠 ∈ ,
so it also holds that 0 ≤ 𝑉ℎ+1(𝑠) = 𝑉ℎ+1(𝑠)∕𝐻 ≤ 1 for all 𝑠 ∈ and ℎ ∈ [𝐻]. By Theorem 3.7, we know that QMEBO
needs 𝑂(√𝑆(𝐻2∕𝜖 +

√

𝐻2∕𝜖)
)

= 𝑂(
√

𝑆𝐻2∕𝜖) queries to 𝑂 for each 𝑠 ∈ at each time step ℎ ∈ [𝐻], provided
0 < 𝜖 ≤ 𝐻2. Since we have assumed that 𝜖 ≤ 𝐻 on the input 𝜖, so this holds.
In line 6, 𝐵�̂�ℎ,𝑠 needs to call 𝐵𝑧ℎ,𝑠 and 𝐵†

𝑧ℎ,𝑠 once. Then the query complexity of 𝐵�̂�ℎ,𝑠 in terms of 𝐵𝑧ℎ,𝑠 is 𝑂(1).
In line 7, we use QMS in accelerating the searching for the optimal action �̂�(𝑠, ℎ) for all 𝑠 ∈ . By Theorem 3.4, QMS
requires 𝑂(√𝐴) queries to the oracle 𝐵�̂�ℎ,𝑠 for all 𝑠 ∈ and ℎ ∈ [𝐻]. Therefore, after summing up 𝐻 iterations, it induces
an overall query cost of

𝐶 = 𝑂

(

𝑆 ⋅
√

𝐴 ⋅𝐻 ⋅

√

𝑆𝐻2

𝜖

)

= 𝑂

(

𝑆
3
2
√

𝐴𝐻3

𝜖

)

. (67)

Combining the above equation with Eq. (66), the overall quantum query complexity of QVI-2(, 𝜖, 𝛿) is

𝑂

(

𝑆
3
2
√

𝐴𝐻3 log(𝑆𝐴1.5𝐻∕𝛿)
𝜖

)

. (68)

B. Generative Model Setting
B.1. Correctness and Complexity of QVI-3 (Algorithm 4)

B.1.1. PROOF OF LEMMA B.1
Lemma B.1. QVI-3(, 𝜖, 𝛿) holds that ℎ

�̂� (𝑉ℎ+1) −
𝜖
𝐻 ≤ 𝑉ℎ ≤ ℎ

�̂� (𝑉ℎ+1) for all ℎ ∈ [𝐻] with a success probability at
least 1 − 𝛿.

Proof. The analysis of success probability is the same as Theorem 4.3 and hence is omitted here. We proceed to show the
correctness of the claim. For all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻] we have that

|

|

|

𝑧ℎ,𝑠(𝑎) +
𝜖
2𝐻

− 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

≤ 𝜖
2𝐻

. (69)
This implies, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻],

𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 −

𝜖
𝐻

≤ 𝑧ℎ,𝑠(𝑎) ≤ 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1. (70)

Now, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻], we let
�̃�ℎ(𝑠, 𝑎) ∶= 𝑟ℎ(𝑠, 𝑎) + 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 and 𝑉ℎ(𝑠) ∶= max
𝑎∈

�̃�ℎ(𝑠, 𝑎). (71)
Note that ℎ

�̂� (𝑉ℎ+1) = �̃�ℎ
(

𝑠, �̂�(𝑠, ℎ)
)

= 𝑟ℎ(𝑠, �̂�(𝑠, ℎ)) + 𝑃 𝑇ℎ|𝑠,�̂�(𝑠,ℎ)𝑉ℎ+1. Therefore, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻], we
have

�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) = max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0} −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

. (72)
On one hand, since 𝑧ℎ,𝑠(𝑎) ≤ 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 and 𝑉ℎ+1 ≥ 0, then we have
�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) ≤ max

{

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1, 0

}

−
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

= 𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 −

(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

= 0.

(73)

23

Quantum Algorithms for Finite-horizon Markov Decision Processes

On the other hand, we also have

�̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) = max{𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎), 0} −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

,

≥ 𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎) −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

)

,

= 𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1,

≥ − 𝜖
𝐻
.

(74)

The last line comes from Eq. (70). In summary, for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻], we have

− 𝜖
𝐻

≤ �̂�ℎ,𝑠(𝑎) − �̃�ℎ(𝑠, 𝑎) ≤ 0, (75)

Hence, by letting 𝑎 = �̂�(𝑠, ℎ), we will have

− 𝜖
𝐻

≤ 𝑉ℎ − ℎ
�̂� (𝑉ℎ+1) = �̂�ℎ,𝑠

(

�̂�(𝑠, ℎ)
)

− �̃�ℎ
(

𝑠, �̂�(𝑠, ℎ)
)

≤ 0, (76)

 ℎ
�̂� (𝑉ℎ+1) −

𝜖
𝐻

≤ 𝑉ℎ ≤ ℎ
�̂� (𝑉ℎ+1). (77)

B.1.2. CORRECTNESS OF QVI-3 (PROOF OF THEOREM 4.3)
Proof. We start by examining the failure probability. The analysis is similar to Theorem 3.8 where we need to consider
quantum oracles that can fail. Again, we use the quantum union bound for quantum operators here.
In line 5, since 𝐵𝑧ℎ,𝑠 is constructed using QME1 with a failure probability 𝜁 , it is within 2𝐴𝜁 of its "ideal version."
Specifically, this means that there exists an ideal quantum oracle 𝐵ideal

𝑧ℎ,𝑠
encoding ̃𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 − 𝜖∕2𝐻 , where ̃𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

satisfies ‖‖
‖

‖

̃𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1 − 𝑃

T
ℎ|𝑠,𝑎𝑉ℎ+1

‖

‖

‖

‖∞
≤ 𝜖∕(2𝐻), such that ‖‖

‖

𝐵ideal
𝑧ℎ,𝑠

− 𝐵𝑧ℎ,𝑠
‖

‖

‖op ≤ 2𝐴𝜁 . Since 𝐵�̂�ℎ,𝑠 is formed using one call
each to 𝐵𝑧ℎ,𝑠 and 𝐵†

𝑧ℎ,𝑠 , it is within 4𝐴𝜁 of its ideal counterpart 𝐵ideal
�̂�ℎ,𝑠

. By applying the quantum union bound and substituting
the definition of 𝜁 , this shows that the quantum operation executed by QMS is (𝑐√𝐴 log(1∕𝛿) ⋅ 4𝐴𝜁 = 𝛿∕𝑆𝐻)-close to
its ideal version. Consequently, the output of QMS is incorrect with a probability of at most 𝛿∕𝑆𝐻 . Given that QMS is
invoked a total of 𝑆𝐻 times, the overall failure probability is bounded by 𝛿, as ensured by the standard union bound.
In line 5, we apply QME1 to obtain an approximate value 𝑧ℎ,𝑠(𝑎) of the inner product 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1. Theorem 4.2 guarantees
the output in the line 5 satisfying |𝑧ℎ,𝑠(𝑎) − 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1| ≤ 𝜖∕𝐻 for all 𝑠 ∈ , 𝑎 ∈ and ℎ ∈ [𝐻]. Hence, it holds for all
𝑠 ∈ and 𝑎 ∈ in every loop ℎ ∈ [𝐻] that

|

|

|

�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)

|

|

|

= |

|

|

𝑟ℎ(𝑠, 𝑎) + 𝑧ℎ,𝑠(𝑎) −
(

𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉

∗
ℎ+1

)

|

|

|

≤ |

|

|

𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎(𝑉

∗
ℎ+1 − 𝑉ℎ+1) − 𝑃

T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

≤ |

|

|

𝑧ℎ,𝑠(𝑎) − 𝑃 T
ℎ|𝑠,𝑎𝑉ℎ+1

|

|

|

+ |

|

|

𝑃 T
ℎ|𝑠,𝑎(𝑉

∗
ℎ+1 − 𝑉ℎ+1)

|

|

|

≤ 𝜖
𝐻

+ max
𝑠∈

|

|

|

𝑉ℎ+1(𝑠) − 𝑉 ∗
ℎ+1(𝑠)

|

|

|

= 𝜖
𝐻

+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ∗
ℎ+1

‖

‖

‖∞
.

(78)

24

Quantum Algorithms for Finite-horizon Markov Decision Processes

Further, we have
‖

‖

‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
=
‖

‖

‖

‖

�̂�ℎ,𝑠
(

�̂�(𝑠, ℎ)
)

− max
𝑎∈

𝑄∗
ℎ(𝑠, 𝑎)

‖

‖

‖

‖∞

=
‖

‖

‖

‖

max
𝑎∈

�̂�ℎ,𝑠(𝑎) − max
𝑎∈

𝑄∗
ℎ(𝑠, 𝑎)

‖

‖

‖

‖∞

≤
‖

‖

‖

‖

max
𝑎∈

|

|

|

�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)

|

|

|

‖

‖

‖

‖∞

≤ max
𝑠∈

max
𝑎∈

|

|

|

�̂�ℎ,𝑠(𝑎) −𝑄∗
ℎ(𝑠, 𝑎)

|

|

|

≤ 𝜖
𝐻

+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ∗
ℎ+1

‖

‖

‖∞
.

(79)

Since it holds that 𝑉ℎ(𝑠) = 𝑉 ∗
ℎ (𝑠) = 0 for all 𝑠 ∈ , we can induce that

‖

‖

‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
≤ (𝐻 − ℎ)𝜖

𝐻
+ ‖

‖

‖

𝑉𝐻 − 𝑉 ∗
𝐻
‖

‖

‖∞
=

(𝐻 − ℎ)𝜖
𝐻

. (80)

Then, we know that ‖‖
‖

𝑉ℎ − 𝑉 ∗
ℎ
‖

‖

‖∞
≤ 𝜖 for all ℎ ∈ [𝐻]. In particular, it implies that 𝑉 ∗

ℎ (𝑠) − 𝜖 ≤ 𝑉ℎ(𝑠) for all 𝑠 ∈
and ℎ ∈ [𝐻]. Now, we proceed to prove the 𝑉ℎ(𝑠) ≤ 𝑉 �̂�

ℎ (𝑠) for all 𝑠 ∈ and ℎ ∈ [𝐻]. By Lemma B.1, we know that
𝑉ℎ ≤ ℎ

�̂� (𝑉ℎ+1) for all ℎ ∈ [𝐻]. Therefore, 𝑉𝐻−1(𝑠) ≤ [𝐻−1
�̂� (𝑉𝐻)]𝑠 = [𝐻−1

�̂� (0)]𝑠 = 𝑟𝐻−1
(

𝑠, �̂�(𝑠,𝐻 − 1)
)

= 𝑉 �̂�
𝐻−1(𝑠).

By the monotonicity of the operators ℎ
�̂� , where ℎ ∈ [𝐻], we have 𝑉ℎ ≤ ℎ

�̂� (𝑉ℎ+1) ≤ ℎ
�̂� (ℎ+1

�̂� (𝑉ℎ+2)) ≤ ⋯ ≤ 𝑉 �̂�
ℎ for all

ℎ ∈ [𝐻]. Due to the definition of 𝑉 ∗
ℎ (𝑠), we must have 𝑉 ∗

ℎ (𝑠) = max𝜋∈Π 𝑉 𝜋
ℎ (𝑠) ≥ 𝑉 �̂�

ℎ (𝑠) for all 𝑠 ∈ and ℎ ∈ [𝐻].

B.1.3. COMPLEXITY OF QVI-3 (PROOF OF THEOREM 4.4)
Proof. We first assume that all QMS and QME1 are correct, up to the specified error, because the probability that this does
not hold is at most 𝛿. Let 𝐶 be the complexity of QVI-3(, 𝜖, 𝛿) as if all QMS and QME1 are carried out with maximum
failure probabilities set to constant. Then, since the actual failure probabilities are set to 𝜁 = 𝛿∕(4𝑐𝑆𝐴1.5𝐻 log(1∕𝛿)), the
actual complexity of QVI-3(, 𝜖, 𝛿) is

𝑂
(

𝐶 log
(

𝑆𝐴1.5𝐻 log(1∕𝛿)∕𝛿
)

)

= 𝑂
(

𝐶 log(𝑆𝐴1.5𝐻∕𝛿)
)

. (81)
Now, we check each line of QVI-3(, 𝜖, 𝛿) to bound 𝐶 .
In line 4, we encode the vector 𝑉ℎ+1 to an oracle 𝐵𝑉ℎ+1 . This process does not need to query and only needs to access the
classical vector 𝑉ℎ+1.
In line 5, we implement QME1 to compute the approximate inner product of 𝑃 T

ℎ|𝑠,𝑎𝑉ℎ+1 with error 𝜖∕𝐻 . Besides, the
correctness analysis shows that it holds that 𝑉ℎ+1(𝑠) ≤ 𝑉 ∗

ℎ+1(𝑠) ≤ 𝐻 for all 𝑠 ∈ and ℎ ∈ [𝐻] by Theorem 4.3 and
𝑉ℎ+1(𝑠) ≥ 0 for all 𝑠 ∈ by the definition of itself, �̂�ℎ+1,𝑠(𝑎) and 𝑧ℎ+1,𝑠(𝑎) in QVI-3. By Theorem 4.2, we know that
QME1 needs 𝑂(𝐻2∕𝜖 +

√

𝐻2∕𝜖
)

= 𝑂(𝐻2∕𝜖) queries to for each 𝑠 ∈ , provided 0 < 𝜖 ≤ 𝐻2. Since we have assumed
that 𝜖 ≤ 𝐻 on the input 𝜖, so this holds.
In line 7, 𝐵�̂�ℎ,𝑠 needs to call 𝐵𝑧ℎ,𝑠 and 𝐵†

𝑧ℎ,𝑠 once. Then the query complexity of 𝐵�̂�ℎ,𝑠 in terms of 𝐵𝑧ℎ,𝑠 is 𝑂(1).
In line 8, we use QMS in accelerating the searching for the optimal action �̂�(𝑠, ℎ) for all 𝑠 ∈ . By Theorem 3.4, QMS
requires 𝑂(√𝐴) queries to the oracle 𝐵�̂�ℎ,𝑠 for all 𝑠 ∈ and ℎ ∈ [𝐻]. Therefore, it induces an overall query cost of

𝐶 = 𝑂
(

𝑆 ⋅
√

𝐴 ⋅𝐻 ⋅
𝐻2

𝜖

)

= 𝑂
(

𝑆
√

𝐴𝐻3

𝜖

)

, (82)
in𝐻 iterations. Combining the above equation with Equation (81), the overall quantum query complexity of QVI-3(, 𝜖, 𝛿)
is

𝑂

(

𝑆
√

𝐴𝐻3 log(𝑆𝐴1.5𝐻∕𝛿)
𝜖

)

. (83)

25

Quantum Algorithms for Finite-horizon Markov Decision Processes

B.2. Correctness and Complexity of QVI-4

Lemma B.2 (Upper Bound on Variance (Sidford et al., 2018)). For any policy 𝜋 ∶ × [𝐻] → , it must hold that

‖

‖

‖

‖

‖

‖

𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋𝑖

)

𝜎ℎ′ (𝑉 𝜋
ℎ′+1)

‖

‖

‖

‖

‖

‖∞

≤ 𝐻3∕2, (84)

where 𝜎ℎ′ (𝑉 𝜋
ℎ′+1) =

√

𝑃ℎ′ (𝑉 𝜋
ℎ′+1)

2 − (𝑃ℎ′𝑉 𝜋
ℎ′+1)

2.

B.2.1. PROOF OF LEMMA B.3
Lemma B.3. For all 𝑘 ∈ [𝐾] and ℎ ∈ [𝐻], Algorithm 5 holds that

𝑉𝑘,ℎ ≤ 𝑉 𝜋𝑘
ℎ ≤ 𝑉 ∗

ℎ , (85)
𝑄𝑘,ℎ ≤ 𝑄𝜋𝑘ℎ ≤ 𝑄∗

ℎ, (86)
with probability at least 1 − 𝛿.

Proof. We first consider the success probability. Note that all the quantum subroutines QME1 and QME2 are implemented
with maximum failure probability 𝜁 = 𝛿∕4𝐾𝐻𝑆𝐴. In total, QME1 and QME2 are implemented 4𝐾𝐻𝑆𝐴 times in line 6,
7 and 9. By the union bound, the probability that there exists an incorrect estimate is at most 𝛿.
Now, we proceed to prove the inequalities

𝑉𝑘,ℎ ≤ 𝑉 𝜋𝑘
ℎ ≤ 𝑉 ∗

ℎ . (87)
Note that the second inequality is trivial due to the definition of 𝑉 ∗

ℎ = max𝜋∈Π 𝑉 𝜋
ℎ . Therefore, we only need to prove the

inequality 𝑉𝑘,ℎ ≤ 𝑉 𝜋𝑘
ℎ for all ℎ ∈ [𝐻] and 𝑘 ∈ [𝐾]. In fact, it suffices to show that for all 𝑘 ∈ [𝐾], we have

𝑉𝑘,ℎ ≤ ℎ
𝜋𝑘
(𝑉𝑘,ℎ+1). (88)

First, by the definition of 𝑥𝑘,ℎ and 𝑔𝑘,ℎ in line 7 and line 9 respectively, we have, for all (𝑠, 𝑎) ∈ ×,
𝑥𝑘,ℎ(𝑠, 𝑎) ≤ 𝑃 T

ℎ|𝑠,𝑎𝑉
(0)
𝑘,ℎ+1, (89)

𝑔𝑘,ℎ(𝑠, 𝑎) ≤ 𝑃 T
ℎ|𝑠,𝑎(𝑉𝑘,ℎ+1 − 𝑉

(0)
𝑘,ℎ+1). (90)

We continue to prove Eq. (88) by induction on 𝑘. We first consider the base case where 𝑘 = 0. For any ℎ ∈ [𝐻], if there
exists some 𝑠 ∈ such that 𝜋𝑘(𝑠, ℎ) ≠ 𝜋(0)𝑘 (𝑠, ℎ), then we have

𝑉𝑘,ℎ(𝑠) = 𝑉𝑘,ℎ(𝑠)
= 𝑄𝑘,ℎ

(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

= max
{

𝑟ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

+ 𝑥𝑘,ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

+ 𝑔𝑘,ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

, 0
}

≤ max
{

𝑟ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

+ 𝑃 T
ℎ|𝑠,𝜋𝑘(𝑠,ℎ)

𝑉 (0)
𝑘,ℎ+1 + 𝑃

T
ℎ|𝑠,𝜋𝑘(𝑠,ℎ)

(𝑉𝑘,ℎ+1 − 𝑉
(0)
𝑘,ℎ+1), 0

}

= max
{

𝑟ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

+ 𝑃 T
ℎ|𝑠,𝜋𝑘(𝑠,ℎ)

𝑉𝑘,ℎ+1, 0
}

= 𝑟ℎ
(

𝑠, 𝜋𝑘(𝑠, ℎ)
)

+ 𝑃 T
ℎ|𝑠,𝜋𝑘(𝑠,ℎ)

𝑉𝑘,ℎ+1

=
[

 ℎ
𝜋𝑘
(𝑉𝑘,ℎ+1)

]

𝑠.

(91)

If there exists some 𝑠 ∈ such that 𝜋𝑘(𝑠, ℎ) = 𝜋(0)𝑘 (𝑠, ℎ), then we have 𝑉𝑘,ℎ(𝑠) = 𝑉 (0)
𝑘,ℎ (𝑠) = 𝑉 (0)

0,ℎ (𝑠) = 0. Since
𝑉𝑘,ℎ+1(𝑠) ≥ 𝑉 (0)

𝑘,ℎ+1(𝑠) = 𝑉 (0)
0,ℎ+1(𝑠) = 0 for all 𝑠 ∈ , then we must have 𝑉𝑘,ℎ(𝑠) = 0 ≤ [ℎ

𝜋𝑘
(𝑉𝑘,ℎ+1)]𝑠. Therefore, when

26

Quantum Algorithms for Finite-horizon Markov Decision Processes

𝑘 = 0, it holds that 𝑉𝑘,ℎ ≤ ℎ
𝜋𝑘
(𝑉𝑘,ℎ+1) for all ℎ ∈ [𝐻]. We assume that for any 𝑘′ = 0, 1,… , 𝑘 − 1, it also holds that

𝑉𝑘′,ℎ ≤ ℎ
𝜋𝑘
(𝑉𝑘′,ℎ+1) for all ℎ ∈ [𝐻]. Next, we show the above statement holds for 𝑘′ = 𝑘. In fact, if there exists some

𝑠 ∈ such that 𝜋𝑘(𝑠, ℎ) ≠ 𝜋(0)𝑘 (𝑠, ℎ), then we also have 𝑉𝑘,ℎ(𝑠) ≤ [ℎ
𝜋 (𝑉𝑘,ℎ+1)]𝑠 by following the same analysis in the case

of 𝑘 = 0. If there exists some 𝑠 ∈ such that 𝜋𝑘(𝑠, ℎ) = 𝜋(0)𝑘 (𝑠, ℎ), then we have

𝑉𝑘,ℎ(𝑠) = 𝑉 (0)
𝑘,ℎ (𝑠) = 𝑉𝑘−1,ℎ(𝑠) ≤

[

 ℎ
𝜋𝑘−1

(𝑉𝑘−1,ℎ+1)
]

𝑠 =
[

 ℎ
𝜋𝑘−1

(𝑉 (0)
𝑘,ℎ+1)

]

𝑠 ≤
[

 ℎ
𝜋𝑘−1

(𝑉𝑘,ℎ+1)
]

𝑠 =
[

 ℎ
𝜋𝑘
(𝑉𝑘,ℎ+1)

]

𝑠. (92)

The first inequality comes from the induction hypothesis. The second inequality comes from the fact that 𝑉 (0)
𝑘,ℎ+1 ≤ 𝑉𝑘,ℎ+1.

The last equation comes from the fact that 𝜋𝑘(𝑠, ℎ) = 𝜋(0)𝑘 (𝑠, ℎ) = 𝜋𝑘−1(𝑠, ℎ). Therefore, we already showed that 𝑉𝑘,ℎ ≤
 ℎ
𝜋𝑘
(𝑉𝑘,ℎ+1) for the case 𝑘′ = 𝑘 and finish the induction. Since we have 𝑉𝑘,ℎ ≤ ℎ

𝜋𝑘
(𝑉𝑘,ℎ+1) for all 𝑘 ∈ [𝐾] and ℎ ∈ [𝐻] and

𝑉𝑘,𝐻 (𝑠) = 0,∀𝑠 ∈ , then for any fixed 𝑘 ∈ [𝐾], 𝑉𝑘,ℎ ≤ ℎ
𝜋𝑘
(⋯ 𝐻−1

𝜋𝑘
(𝑉𝑘,𝐻)) = 𝑉 𝜋𝑘

ℎ for all ℎ ∈ [𝐻].
Furthermore, since we already proved 𝑉𝑘,ℎ ≤ 𝑉 𝜋𝑘

ℎ for all ℎ ∈ [𝐻] and 𝑘 ∈ [𝐾], we also have, for all (𝑠, 𝑎) ∈ ×,

𝑄𝑘,ℎ(𝑠, 𝑎) ≤ 𝑟ℎ(𝑠, 𝑎) + 𝑃 T
ℎ|𝑠,𝑎𝑉𝑘,ℎ+1 ≤ 𝑟ℎ(𝑠, 𝑎) + 𝑃 T

ℎ|𝑠,𝑎𝑉
𝜋𝑘
ℎ+1 = 𝑄𝜋𝑘ℎ (𝑠, 𝑎) ≤ 𝑄∗

ℎ(𝑠, 𝑎). (93)
The first inequality follows from Eq. (89) and (90).

B.2.2. PROOF OF LEMMA B.4
Lemma B.4. For all 𝑘 ∈ [𝐾] and ℎ ∈ [𝐻], Algorithm 5 holds that

𝑉 ∗
ℎ − 𝜖𝑘 ≤ 𝑉𝑘,ℎ, (94)

𝑄∗
ℎ − 𝜖𝑘 ≤ 𝑄𝑘,ℎ, (95)

with the probability at least 1 − 𝛿.

Proof. The success probability analysis is the same as Lemma B.3, so we omit it here. We continue to use induction on 𝑘 to
prove Eq. (94). First, we consider the base case where 𝑘 = 0 and show (94) holds for all ℎ ∈ [𝐻]. By the definition of 𝑥𝑘,ℎand 𝑔𝑘,ℎ in line 7 and line 9 of QVI-4, we know that, for all (𝑠, 𝑎) ∈ ×,

𝑥𝑘,ℎ(𝑠, 𝑎) ≥ 𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 − 2𝑐𝐻−1.5𝜖

√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏, (96)
𝑔𝑘,ℎ(𝑠, 𝑎) ≥ 𝑃 T

ℎ|𝑠,𝑎(𝑉𝑘,ℎ+1 − 𝑉
(0)
𝑘,ℎ+1) − 2𝑐𝐻−1𝜖𝑘. (97)

We define 𝜉𝑘,ℎ(𝑠, 𝑎) ∶= 2𝑐𝐻−1𝜖𝑘 + 2𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏. Then, we can show that
𝑄∗
ℎ −𝑄𝑘,ℎ = 𝑟ℎ + 𝑃ℎ𝑉 ∗

ℎ+1 − max{𝑟ℎ + 𝑥𝑘,ℎ + 𝑔𝑘,ℎ, 0}

≤ 𝑃ℎ𝑉
∗
ℎ+1 − 𝑥𝑘,ℎ − 𝑔𝑘,ℎ

≤ 𝑃ℎ𝑉
∗
ℎ+1 − 𝑃ℎ𝑉𝑘,ℎ+1 + 2𝑐𝐻−1𝜖𝑘 + 2𝑐𝐻−1.5𝜖

√

𝑦𝑘,ℎ + 4𝑏

= 𝑃ℎ(𝑉 ∗
ℎ+1 − 𝑉𝑘,ℎ+1) + 𝜉𝑘,ℎ

= 𝑃ℎ𝑉 (𝑄∗
ℎ+1) − 𝑃ℎ𝑉𝑘,ℎ+1 + 𝜉𝑘,ℎ.

(98)

Since we have 𝑉 (𝑄𝑘,ℎ+1) ≤ 𝑉𝑘,ℎ+1, then it holds that
𝑄∗
ℎ −𝑄𝑘,ℎ ≤ 𝑃ℎ𝑉 (𝑄∗

ℎ+1) − 𝑃ℎ𝑉 (𝑄𝑘,ℎ+1) + 𝜉𝑘,ℎ
= 𝑃 𝜋

∗

ℎ 𝑄∗
ℎ+1 − 𝑃ℎ𝑉 (𝑄𝑘,ℎ+1) + 𝜉𝑘,ℎ

≤ 𝑃 𝜋
∗

ℎ 𝑄∗
ℎ+1 − 𝑃

𝜋∗
ℎ 𝑄𝑘,ℎ+1 + 𝜉𝑘,ℎ.

(99)

27

Quantum Algorithms for Finite-horizon Markov Decision Processes

The second line comes from the fact that 𝑉 ∗
ℎ (𝑠) = 𝑄∗

ℎ+1(𝑠, 𝜋
∗(𝑠, ℎ)) for all 𝑠 ∈ and ℎ ∈ [𝐻]. The last line comes from the

fact that 𝜋∗(𝑠, ℎ) may not be the same as argmax𝑎∈𝑄𝑘,ℎ+1(𝑠, 𝑎) for some 𝑠 ∈ . Since it must hold that 𝑉 ∗
𝐻 (𝑠) = 0,∀𝑠 ∈

and we require that 𝑉𝑘,𝐻 (𝑠) = 0,∀𝑠 ∈ , then we have 𝑉 ∗
𝐻 (𝑠)−𝑉𝑘,𝐻 (𝑠) = 0,∀𝑠 ∈ . By solving the recursion on𝑄∗

ℎ−𝑄𝑘,ℎ,
we can obtain

𝑄∗
ℎ −𝑄𝑘,ℎ ≤

𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋

∗

𝑖

)

𝜉𝑘,ℎ′ , (100)

where 𝜉𝑘,ℎ′ (𝑠, 𝑎) = 2𝑐𝐻−1𝜖𝑘 + 2𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏 for all (𝑠, 𝑎) ∈ ×. Note that a product over an empty index
set evaluates to 1. Now, we try to bound √

𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏 for all (𝑠, 𝑎) ∈ ×. By the definition of 𝑦𝑘,ℎ(𝑠, 𝑎) in line 6 of
QVI-4, we know that there exists a 𝑏′ satisfying |𝑏′| ≤ 𝑏 such that

√

𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏 ≤ max
{

(

𝑃 T
ℎ′|𝑠,𝑎(𝑉

(0)
𝑘,ℎ′+1)

2 + 𝑏 − (𝑃 T
ℎ′|𝑠,𝑎𝑉

(0)
𝑘,ℎ′+1 − 𝑏

′∕𝐻)2 + 4𝑏
)1∕2,

√

4𝑏
}

≤
(

𝜎2ℎ′ (𝑉
(0)
𝑘,ℎ′+1) + 5𝑏 + 2𝑏𝐻−1𝑃 T

ℎ′|𝑠,𝑎𝑉
(0)
𝑘,ℎ′+1

)1∕2

≤
(

𝜎2ℎ′ (𝑉
(0)
𝑘,ℎ′+1) + 7𝑏

)1∕2.

(101)

Since it holds that 𝑉 (0)
𝑘,ℎ′+1(𝑠) = 0 for all 𝑠 ∈ and ℎ′ ∈ [𝐻] when 𝑘 = 0, then 𝜎2ℎ′ (𝑉 (0)

𝑘,ℎ′+1) = 0. This implies that
√

𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏 ≤
√

7𝑏. Then we can show that

𝑄∗
ℎ −𝑄𝑘,ℎ ≤

𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋

∗

𝑖

)(

2𝑐𝐻−1𝜖𝑘 + 2𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ′ + 4𝑏

)

≤ 2𝑐𝜖𝑘 + 2𝑐𝐻−0.5𝜖
√

7𝑏

≤ 2𝑐𝜖𝑘 + 2𝑐𝜖
√

7𝑏

≤
(

2𝑐 + 4𝑐
√

7𝑏
)

𝜖𝑘

≤ 𝜖𝑘.

(102)

The second line comes from the fact that
‖

‖

‖

‖

‖

‖

∑𝐻−1
ℎ′=ℎ

(

∏ℎ′
𝑖=ℎ+1 𝑃

𝜋∗
𝑖

)

𝟏
‖

‖

‖

‖

‖

‖∞

≤ 𝐻 − ℎ ≤ 𝐻 for all ℎ ∈ [𝐻]. The third line comes
from the fact that𝐻 ≥ 1. The fourth line comes from the fact that 𝜖 ≤ 2𝜖𝑘 = 2𝜖0 = 2𝐻 . The last line comes from the fact that
𝑐 = 0.001 and 𝑏 = 1. Therefore, we have 𝑉𝑘,ℎ(𝑠) ≥ 𝑉 (𝑄𝑘,ℎ)(𝑠) = max𝑎∈𝑄𝑘,ℎ(𝑠, 𝑎) ≥ max𝑎∈{𝑄∗

ℎ(𝑠, 𝑎)−𝜖𝑘} = 𝑉 ∗
ℎ (𝑠)−𝜖𝑘for the base case 𝑘 = 0.

Now, we assume that for any 𝑘′ = 1,… , 𝑘 − 1, it also holds that 𝑉𝑘,ℎ(𝑠) ≥ 𝑉 ∗
ℎ (𝑠) − 𝜖𝑘 for all ℎ ∈ 𝐻 . Then, we proceed to

prove the claim for the case of 𝑘′ = 𝑘. In fact, the analysis for the case of 𝑘′ = 𝑘 is quite similar to the base case, except for
the part of the upper bound for √𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏. We can show that there exists a 𝑏′ satisfying |𝑏′| ≤ 𝑏

√

𝑦𝑘,ℎ′ (𝑠, 𝑎) + 4𝑏 ≤ max
{

(

𝑃 T
ℎ′|𝑠,𝑎(𝑉

(0)
𝑘,ℎ+1)

2 + 𝑏 − (𝑃 T
ℎ′|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 − 𝑏

′∕𝐻)2 + 4𝑏
)1∕2,

√

4𝑏
}

≤
(

𝜎2ℎ′ (𝑉
(0)
𝑘,ℎ′+1) + 5𝑏 + 2𝑏𝐻−1𝑃 T

ℎ′|𝑠,𝑎𝑉
(0)
𝑘,ℎ′+1

)1∕2

≤
(

𝜎2ℎ′ (𝑉
(0)
𝑘,ℎ′+1) + 7𝑏

)1∕2

≤ 𝜎ℎ′ (𝑉
(0)
𝑘,ℎ′+1) +

√

7𝑏

≤ 𝜎ℎ′ (𝑉 ∗
ℎ′+1) + 𝜎(𝑉

(0)
𝑘,ℎ′+1 − 𝑉

∗
ℎ′+1) +

√

7𝑏.

(103)

The third line comes from the fact that 𝑉 (0)
𝑘,ℎ′+1(𝑠) ≤ 𝐻 for all 𝑠 ∈ . The fourth line comes from the fact that √𝑎 + 𝑏 ≤

√

𝑎 +
√

𝑏 when 𝑎, 𝑏 ≥ 0. The last line comes from the fact that, for any random variables 𝑋 and 𝑌 , we must have
𝜎2(𝑋 + 𝑌) = Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌] + 2Cov[𝑋, 𝑌] ≤ (

√Var[𝑋] +
√Var[𝑌])2 = (𝜎(𝑋) + 𝜎(𝑌))2. Note that

28

Quantum Algorithms for Finite-horizon Markov Decision Processes

𝜎(𝑉 (0)
𝑘,ℎ′+1 − 𝑉

∗
ℎ′+1) ≤

‖

‖

‖

𝑉 (0)
𝑘,ℎ′+1 − 𝑉

∗
ℎ′+1

‖

‖

‖∞
= ‖

‖

‖

𝑉𝑘−1,ℎ′+1 − 𝑉 ∗
ℎ′+1

‖

‖

‖∞
≤ 𝜖𝑘−1 = 2𝜖𝑘 for all ℎ′ ∈ [𝐻]. Therefore, we can show

that
𝑄∗
ℎ −𝑄𝑘,ℎ ≤

𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋

∗

𝑖

)

(

2𝑐𝐻−1𝜖𝑘 + 2𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ′ + 4𝑏
)

≤ 2𝑐𝜖𝑘 + 2𝑐𝐻−1.5𝜖
𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋

∗

𝑖

)

(

𝜎(𝑉 ∗
ℎ′+1) + 𝜎(𝑉

(0)
𝑘,ℎ′+1 − 𝑉

∗
ℎ′+1) +

√

7𝑏
)

≤ 2𝑐𝜖𝑘 + 2𝑐𝐻−1.5𝜖
𝐻−1
∑

ℎ′=ℎ

(ℎ′
∏

𝑖=ℎ+1
𝑃 𝜋

∗

𝑖

)

(

𝜎(𝑉 ∗
ℎ′+1) + 2𝜖𝑘 +

√

7𝑏
)

≤ 2𝑐𝜖𝑘 + 2𝑐𝜖 + 2𝑐𝐻−0.5𝜖
(

2𝜖𝑘 +
√

7𝑏
)

≤ 2𝑐
(

1 + 2 + 2 +
√

7
)

𝜖𝑘

≤ 𝜖𝑘.

(104)

The fourth line comes from the Lemma B.2 and the fact that
‖

‖

‖

‖

‖

‖

∑𝐻−1
ℎ′=ℎ

(

∏ℎ′
𝑖=ℎ+1 𝑃

𝜋∗
𝑖

)

𝟏
‖

‖

‖

‖

‖

‖∞

≤ 𝐻 − ℎ ≤ 𝐻 for all ℎ ∈ [𝐻].

The fifth line comes from the fact that we require the input 𝜖 ∈ (0,
√

𝐻]. The last line comes from the fact that 𝑐 = 0.001.
Therefore, we have 𝑉𝑘,ℎ(𝑠) ≥ 𝑉 (𝑄𝑘,ℎ)(𝑠) = max𝑎∈𝑄𝑘,ℎ(𝑠, 𝑎) ≥ max𝑎∈{𝑄∗

ℎ(𝑠, 𝑎) − 𝜖𝑘} = 𝑉 ∗
ℎ (𝑠) − 𝜖𝑘 for the case of

𝑘′ = 𝑘.

B.2.3. CORRECTNESS OF QVI-4 (PROOF OF THEOREM 4.5)
By combining Lemma B.4 and Lemma B.3, we can obtain that, for all 𝑘 ∈ [𝐾],

𝑉 ∗
ℎ − 𝜖𝑘 ≤ 𝑉𝑘,ℎ ≤ 𝑉 𝜋𝑘

ℎ ≤ 𝑉 ∗
ℎ , (105)

𝑄∗
ℎ − 𝜖𝑘 ≤ 𝑄𝑘,ℎ ≤ 𝑄𝜋𝑘ℎ ≤ 𝑄∗

ℎ, (106)
with probability at least 1 − 𝛿. When 𝑘 = 𝐾 − 1 = ⌈log2(𝐻∕𝜖)⌉ ≥ log2(𝐻∕𝜖), 𝜖𝑘 = 𝐻∕2𝑘 ≤ 𝜖. Therefore, it implies that

𝑉 ∗
ℎ − 𝜖 ≤ 𝑉 ∗

ℎ − 𝜖𝐾−1 ≤ 𝑉𝐾−1,ℎ = 𝑉ℎ ≤ 𝑉 𝜋𝐾−1
ℎ = 𝑉 �̂�

ℎ ≤ 𝑉 ∗
ℎ , (107)

𝑄∗
ℎ − 𝜖 ≤ 𝑄∗

ℎ − 𝜖𝐾−1 ≤ 𝑄𝐾−1,ℎ = �̂�ℎ ≤ 𝑄𝜋𝐾−1
ℎ = 𝑄�̂�ℎ ≤ 𝑄∗

ℎ, (108)
with probability at least 1 − 𝛿.

B.2.4. COMPLEXITY OF QVI-4 (PROOF OF THEOREM 4.6)
Proof. The success probability analysis is analogous to Lemma B.3. Hence, we omit it here. We first assume that all
estimations are correct, up to the specified error, because the probability that this does not hold is at most 𝛿. Let 𝐶 be the
complexity of QVI-4(, 𝜖, 𝛿) as if all estimations are carried out with maximum failure probabilities set to constant. Then,
since the actual maximum failure probabilities are set to 𝜁 = 𝛿∕(4𝐾𝐻𝑆𝐴), the actual complexity of QVI-4(, 𝜖, 𝛿) is

𝑂
(

𝐶 log(𝐾𝐻𝑆𝐴∕𝛿)
)

. (109)
Now, we check each line of QVI-4(, 𝜖, 𝛿) to bound 𝐶 .
In line 6, since we have 0 ≤ 𝑉 (0)

𝑘,ℎ+1(𝑠) = 𝑉𝑘−1,ℎ+1(𝑠) ≤ 𝑉 ∗
ℎ+1(𝑠) ≤ 𝐻 for all 𝑘 > 0 and 0 = 𝑉 (0)

𝑘,ℎ+1(𝑠) = 𝑉𝑘−1,ℎ+1(𝑠) ≤
𝑉 ∗
ℎ+1(𝑠) ≤ 𝐻 for all 𝑠 ∈ when 𝑘 = 0, therefore, we can use quantum mean estimation algorithm QME1, which induces a

total query complexity in the order

𝐾𝐻𝑆𝐴
(

𝐻2∕𝑏 +
√

𝐻2∕𝑏 +𝐻2∕𝑏 +
√

𝐻2∕𝑏
)

= 𝑂(𝐾𝑆𝐴𝐻3). (110)

29

Quantum Algorithms for Finite-horizon Markov Decision Processes

Now, we focus on line 7. By the definition of 𝑦𝑘,ℎ(𝑠, 𝑎) in line 6, we know that there exists a 𝑏′ satisfying |𝑏′| ≤ 𝑏 such that
𝑦𝑘,ℎ(𝑠, 𝑎) ≥ max

{

𝑃 T
ℎ|𝑠,𝑎(𝑉

(0)
𝑘,ℎ+1)

2 − 𝑏 −
(

𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 + 𝑏

′∕𝐻
)2, 0

}

≥ 𝑃 T
ℎ|𝑠,𝑎(𝑉

(0)
𝑘,ℎ+1)

2 − 𝑏 −
(

𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 + 𝑏

′∕𝐻
)2

=
[

𝜎2(𝑉 (0)
𝑘,ℎ+1)

]

(𝑠,𝑎) − 𝑏 − (2𝑏′∕𝐻)𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 − (𝑏′)2∕𝐻2.

(111)

This implies that
[

𝜎2(𝑉 (0)
𝑘,ℎ+1)

]

(𝑠,𝑎) ≤ 𝑦𝑘,ℎ(𝑠, 𝑎) + 𝑏 + (2𝑏∕𝐻)𝑃 T
ℎ|𝑠,𝑎𝑉

(0)
𝑘,ℎ+1 + 𝑏

2∕𝐻2 ≤ 𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏. (112)
The last inequality follows from 𝑏 = 1 and 𝑉 (0)

𝑘,ℎ+1(𝑠) = 𝑉𝑘−1,ℎ+1(𝑠) ≤ 𝑉 ∗
ℎ+1(𝑠) ≤ 𝐻 for all 𝑠 ∈ when 𝑘 ≥ 1 and

𝑉 (0)
0,ℎ+1(𝑠) = 0 for all 𝑠 ∈ . We also note that, since we have 𝑦𝑘,ℎ(𝑠, 𝑎) ≥ 0 (by the definition in line 6), then it holds that

0 < 𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏 < 4
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏. Therefore, we can use quantum mean estimation algorithm QME2 with
error 𝑐𝐻−1.5𝜖

√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏 and variance upper bound set to 𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏, which induces a total query complexity of
order

𝐾𝐻
∑

(𝑠,𝑎)∈×
𝑤(𝑠, 𝑎) log2

(

𝑤(𝑠, 𝑎)
)

= 𝑂
(

𝐾𝑆𝐴𝐻2.5𝜖−1 log2(𝐻1.5∕𝜖)
)

, (113)

where 𝑤(𝑠, 𝑎) = (√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏
)(

𝑐𝐻−1.5𝜖
√

𝑦𝑘,ℎ(𝑠, 𝑎) + 4𝑏
)−1 = 𝑂(𝐻1.5∕𝜖).

In line 9, we can bound 0 ≤ 𝑉𝑘,ℎ+1(𝑠) − 𝑉
(0)
𝑘,ℎ+1(𝑠) ≤ 𝑉 ∗

ℎ+1(𝑠) − 𝑉
(0)
𝑘,ℎ+1(𝑠) = 𝑉 ∗

ℎ+1(𝑠) − 𝑉𝑘−1,ℎ+1(𝑠) ≤ 𝜖𝑘−1 = 2𝜖𝑘 for all
𝑠 ∈ and 𝑘 ≥ 1. When 𝑘 = 0, since 𝑉0,ℎ+1(𝑠) ≥ 𝑉 (0)

0,ℎ+1(𝑠) = 0, then we also have 0 ≤ 𝑉0,ℎ+1(𝑠) − 𝑉
(0)
0,ℎ+1(𝑠) = 𝑉0,ℎ+1(𝑠) ≤

𝑉 ∗
ℎ+1(𝑠) ≤ 𝐻 = 𝜖0 for all 𝑠 ∈ . Therefore, we can use quantum mean estimation algorithm QME1 which induces a total

query complexity of order
𝐾𝐻𝑆𝐴

(

2𝜖𝑘
𝑐𝐻−1𝜖𝑘

+

√

2𝜖𝑘
𝑐𝐻−1𝜖𝑘

)

= 𝑂(𝐾𝑆𝐴𝐻2). (114)

Therefore, we can show that
𝐶 = 𝑂

(

𝐾𝑆𝐴(𝐻2.5∕𝜖 +𝐻3 +𝐻2) log2(𝐻1.5∕𝜖)
)

= 𝑂
(

𝑆𝐴(𝐻2.5∕𝜖 +𝐻3) log2(𝐻1.5∕𝜖)
)

. (115)
Then the total query complexity is

𝑂
(

𝑆𝐴(𝐻2.5∕𝜖 +𝐻3) log2(𝐻1.5∕𝜖) log
(

log(𝐻∕𝜖)𝐻𝑆𝐴∕𝛿
)

)

. (116)

B.3. Lower Bounds

B.3.1. INFINITE-HORIZON MDPS
Preliminaries of infinite-horizon MDPs: An infinite-horizon MDP is formally defined as a tuple ̃ ∶= (,, 𝑃 , 𝑟, 𝛾),
where is a finite set of states representing the possible configurations of the environment, and is a finite set of actions
available to the agent at each state. The transition probability 𝑃 (𝑠′|𝑠, 𝑎) specifies the likelihood of transitioning to state 𝑠′
after taking action 𝑎 in state 𝑠, ensuring that ∑𝑠′∈ 𝑃 (𝑠′|𝑠, 𝑎) = 1 for all 𝑠 ∈ and 𝑎 ∈ . The reward function 𝑟(𝑠, 𝑎),
bounded within [0, 1], assigns a scalar reward for executing action 𝑎 in state 𝑠. Finally, the discount factor 𝛾 ∈ [0, 1)
determines the relative importance of future rewards compared to immediate ones, with Γ ∶= 1

1−𝛾 . Given such an MDP, the
agent’s objective is to select actions that maximize the expected sum of discounted rewards over an infinite time horizon. The
primary goal is to compute a policy 𝜋 ∶ → that specifies the action 𝑎 = 𝜋(𝑠) the agent should take in each state 𝑠 ∈ to
optimize its performance with high probability. For a given policy 𝜋, the state-value function (or V-value) 𝑉 𝜋 ∶ → [0,Γ]
and the state-action-value function (or Q-value) 𝑄𝜋 ∶ × → [0,Γ] are defined as follows:

𝑉 𝜋(𝑠) = 𝔼

[∞
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)

|

|

|

|

|

𝜋, 𝑠0 = 𝑠

]

, (117)

30

Quantum Algorithms for Finite-horizon Markov Decision Processes

𝑄𝜋(𝑠, 𝑎) = 𝔼

[∞
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)

|

|

|

|

|

𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎

]

. (118)

A policy 𝜋 is an optimal policy 𝜋∗ if 𝑉 𝜋 = max𝜋∈Π 𝑉 𝜋 = 𝑉 𝜋∗ where Π is the space of all policies. For simplicity, we
denote 𝑉 ∗ ∶= 𝑉 𝜋∗ and 𝑄∗ ∶= 𝑄𝜋∗ .
Optimization goals in infinite-horizon MDPs: The primary computational objectives in infinite-horizon MDPs are as
follows: given an infinite-horizon MDP ̃, an approximation error 𝜖, and a failure probability 𝛿, the goal is to compute
𝜖-estimates �̂�, 𝑉 , and �̂� such that ‖𝑉 �̂� − 𝑉 ∗

‖∞ ≤ 𝜖, ‖𝑉 − 𝑉 ∗
‖∞ ≤ 𝜖, and ‖�̂� −𝑄∗

‖∞ ≤ 𝜖 with a probability of at least
1 − 𝛿.
Classical generative model for infinite-horizon MDPs: We denote the classical generative model for infinite-horizon
MDPs as �̃�. Assuming access to �̃�, one can collect 𝑁 independent samples

𝑠𝑖𝑠,𝑎
i.i.d.∼ 𝑃 (⋅|𝑠, 𝑎), 𝑖 = 1,… , 𝑁,

for each state-action pair (𝑠, 𝑎) ∈ ×.
Theorem B.5 (Classical and quantum lower bounds for infinite-horizon MDP (Wang et al., 2021)). Fix any integers 𝑆,𝐴 ≥ 2
and 𝛾 ∈ [0.9, 1). Let Γ = (1− 𝛾)−1 ≥ 10 and fix any 𝜖 ∈ (0,Γ∕4). There exists an infinite-horizon MDP ̃ = (,, 𝑃 , 𝑟, 𝛾)
with 𝑆 states, 𝐴 actions, and discount parameter 𝛾 such that the following lower bound hold:

• Given access to a classical generative oracle �̃�, any algorithm that computes an 𝜖-approximation to 𝑄∗, 𝑉 ∗, or 𝜋∗

must make Ω(𝑆𝐴Γ
3

𝜖2) queries.

• Given access to a quantum generative oracle ̃ defined as

̃ ∶ |𝑠⟩⊗ |𝑎⟩⊗ |0⟩⊗ |0⟩ ↦ |𝑠⟩⊗ |𝑎⟩⊗

(

∑

𝑠′∈

√

𝑃 (𝑠′|𝑠, 𝑎) |𝑠′⟩⊗ |𝑣𝑠′⟩

)

, (119)

where |𝑣𝑠′⟩ are arbitrary auxiliary states, any algorithm that computes an 𝜖-approximation to 𝑄∗ must take Ω(𝑆𝐴Γ
1.5

𝜖)

queries and any algorithm that computes an 𝜖-approximation to 𝑉 ∗ or 𝜋∗ must take Ω(𝑆
√

𝐴Γ1.5

𝜖) queries.

B.3.2. FINITE-HORIZON MDPS
Lemma B.6. Let and be finite sets of states and actions. Let 𝐻 > 0 be a positive integer and 𝜖 ∈ (0, 1∕2) be an error
parameter. We consider the following finite-horizon MDP ∶= (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻) where 𝑃ℎ = 𝑃 ∈ ℝ××

and 𝑟ℎ = 𝑟 ∈ [0, 1]× for all ℎ ∈ [𝐻].

• Given access to a classical generative model, any algorithm , which takes as an input and outputs a value function
𝑉0 such that ‖‖

‖

𝑉0 − 𝑉 ∗
0
‖

‖

‖∞
≤ 𝜖 with probability at least 0.9, needs to call the classical generative oracle at least

Ω

(

𝑆𝐴𝐻3

𝜖2 log3(𝜖−1)

)

(120)

times on the worst case of input .

• Given access to a quantum generative oracle defined in Definition 4.1 any algorithm , which takes as an input
and outputs a value function 𝑉0 such that ‖‖

‖

𝑉0 − 𝑉 ∗
0
‖

‖

‖∞
≤ 𝜖 with probability at least 0.9, needs to call the quantum

generative oracle at least

Ω

(

𝑆
√

𝐴𝐻1.5

𝜖 log1.5(𝜖−1)

)

(121)

times on the worst case of input .

31

Quantum Algorithms for Finite-horizon Markov Decision Processes

Proof. We first introduce some definitions about infinite horizon MDPs. Let 𝑠0 ∈ to be a state. Suppose we have an
infinite-horizon MDP ̃ = (̃ , ̃, 𝑃 , 𝑟, 𝛾) with a quantum generative oracle, where ̃ = ⧵ {𝑠0} to be a subset of and
𝛾 ∈ [0, 1). For a better differentiation on the notations between finite-horizon and infinite-horizon MDPs, we let 𝑉 ∗ ∈ ℝ

represent the optimal V-value function of ̃. First, we define a Bellman operator for the infinite-horizon MDP ̃
satisfying, for any 𝑢 ∈ ℝ̃ and 𝑠 ∈ ̃ ,

 (𝑢)𝑠 = max
𝑎∈̃

[

𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑢(𝑠′)

]

. (122)

Note that for any 𝑢, 𝑣 ∈ ℝ̃ satisfying 𝑢(𝑠) ≤ 𝑣(𝑠) for all 𝑠 ∈ ̃ , we have (𝑢)𝑠 ≤ (𝑣)𝑠 for all 𝑠 ∈ ̃ . This is the so-called
monotonicity property of . Besides, it also holds that (𝑉 ∗)𝑠 = 𝑉 ∗(𝑠) for all 𝑠 ∈ ̃ .
Now, we proceed to prove that obtaining an 2𝜖-approximation value of 𝑉 ∗ for any infinite horizon MDP ̃ can be reduced
to obtaining an 𝜖-approximation value of 𝑉 ∗

0 for a finite horizon MDP. We consider the following finite-horizon MDP
 = (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻) where 𝑃ℎ = 𝑃 ∈ ℝ×× and 𝑟ℎ = 𝑟 ∈ [0, 1]×. Besides, the time horizon 𝐻

satisfies 𝐻 = ⌈2(1 − 𝛾)−1 log(2𝜖−1)⌉ = Θ((1 − 𝛾)−1 log(𝜖−1)). Besides, under any action 𝑎 ∈ = ̃, there is a (1 − 𝛾)
probability for each state 𝑠 ∈ ̃ to transition to 𝑠0 and 𝛾 probability to follow the original transitions in ̃. However, when
the agent is in 𝑠0, it can only transition to itself with probability 1, no matter which action 𝑎 ∈ it takes. Hence, 𝑠0 is an
absorbing state in . Overall, we have the following definitions for the transition probability kernel 𝑃 in .

∀𝑠, 𝑠′ ∈ ̃ , 𝑎 ∈ ,𝑃 (𝑠′|𝑠, 𝑎) = 𝛾𝑃 (𝑠′|𝑠, 𝑎), 𝑃 (𝑠0|𝑠, 𝑎) = (1 − 𝛾), (123)
𝑃 (𝑠′|𝑠0, 𝑎) = 0, 𝑃 (𝑠0|𝑠0, 𝑎) = 1. (124)

Besides, we define 𝑟(𝑠0, 𝑎) = 0, 𝑟(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) ∈ [0, 1] for all 𝑠 ∈ ̃ and 𝑎 ∈ .
Now, we proceed to prove that ‖‖

‖

𝑉 ∗
0 |̃ − 𝑉 ∗‖

‖

‖∞
≤ 𝜖, i.e., |𝑉 ∗

0 (𝑠) − 𝑉
∗(𝑠)| ≤ 𝜖 for all 𝑠 ∈ ̃ . First, we note that 𝑉 ∗

𝐻−1 =
max𝑎∈ 𝑟(𝑠, 𝑎) ≤ 𝑉 ∗. Then, by the monotonicity of the operator, we have (𝑉 ∗

𝐻−1)𝑠 ≤ (𝑉 ∗)𝑠 = 𝑉 ∗(𝑠) for all 𝑠 ∈ ̃ . In
fact, by the definition of 𝑃 in , we have

∀𝑠 ∈ ̃ , (𝑉 ∗
𝐻−1)𝑠 = max

𝑎∈

[

𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

𝐻−1(𝑠
′)

]

= max
𝑎∈

[

𝑟(𝑠, 𝑎) +
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

𝐻−1(𝑠
′) + 𝑃 (𝑠0|𝑠, 𝑎)𝑉 ∗

𝐻−1(𝑠0)

]

= max
𝑎∈

[

𝑟(𝑠, 𝑎) +
∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

𝐻−1(𝑠
′)

]

= 𝑉 ∗
𝐻−2(𝑠).

(125)

The second line above comes from the fact that 𝑉 ∗
𝐻−1(𝑠0) = max𝑎∈ 𝑟(𝑠0, 𝑎) = 0. By induction, we have 𝑉 ∗

ℎ (𝑠0) =
max𝑎∈[𝑟(𝑠0, 𝑎) + 𝑃 (𝑠0|𝑠0, 𝑎)𝑉 ∗

ℎ+1(𝑠0)] = 0 for all ℎ ∈ [𝐻]. Hence, we have 𝑉 ∗
𝐻−2(𝑠) ≤ 𝑉 ∗(𝑠) for all 𝑠 ∈ ̃ . By induction,

we have 𝑉 ∗
ℎ (𝑠) ≤ 𝑉 ∗(𝑠) for all ℎ ∈ [𝐻] and 𝑠 ∈ ̃ . In particular, we have 𝑉 ∗

0 (𝑠) ≤ 𝑉 ∗(𝑠) for all 𝑠 ∈ ̃ . Let �̃�∗ ∈ be an
optimal policy for the infinite-horizon MDP ̃. However, �̃� ∈ ×[𝐻], where �̃�(⋅, ℎ) = �̃�∗ for all ℎ ∈ [𝐻], may not be an
optimal policy for finite-horizon MDP . Then we have 𝑉 �̃�

0 (𝑠) ≤ 𝑉 ∗
0 (𝑠) for all 𝑠 ∈ . In fact, for any 𝑠 ∈ ̃ , we have

𝑉 �̃�
0 (𝑠) = 𝑟

(

𝑠, �̃�∗(𝑠)
)

+
∑

𝑠′∈
𝑃 (𝑠′|𝑠, �̃�∗(𝑠)

)

𝑟
(

𝑠, �̃�∗(𝑠)
)

+⋯ +
∑

𝑠′∈
𝑃𝐻

(

𝑠′|𝑠, �̃�∗(𝑠)
)

𝑟
(

𝑠, �̃�∗(𝑠)
)

= 𝑟
(

𝑠, �̃�∗(𝑠)
)

+ 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, �̃�∗(𝑠))𝑟

(

𝑠, �̃�∗(𝑠)
)

+⋯ + 𝛾𝐻
∑

𝑠′∈̃
𝑃𝐻

(

𝑠′|𝑠, �̃�∗(𝑠)
)

𝑟
(

𝑠, �̃�∗(𝑠)
)

= 𝑉 �̃�∗
𝐻 ,

(126)

where 𝑉 �̃�∗
𝐻 is the V-value induced by the policy �̃�∗ over 𝐻 iterations. Note that for any policy �̃� for the infinite horizon MDP

̃, ‖‖
‖

𝑉 𝜋
𝑘 − 𝑉 𝜋‖

‖

‖∞
≤ 𝛾𝑘 ‖‖

‖

𝑉 𝜋
0 − 𝑉 𝜋‖

‖

‖∞
≤ 𝛾𝑘

(

‖

‖

‖

𝑉 𝜋
0
‖

‖

‖∞
+‖
‖

𝑉 𝜋
‖

‖∞
)

≤ 2 exp
(

−(1−𝛾)𝑘
)

∕(1−𝛾). The last inequality follows from

32

Quantum Algorithms for Finite-horizon Markov Decision Processes

‖

‖

‖

𝑉 𝜋
0
‖

‖

‖∞
≤ 1∕(1 − 𝛾) and ‖

‖

𝑉 𝜋
‖

‖∞ ≤ 1∕(1 − 𝛾). Besides, combining the fact that log(𝛾) ≤ 𝛾 − 1 for all 𝛾 ∈ (0, 1) and exp(𝑥)
is monotonically increasing, we can induce the inequalities 𝑘 log(𝛾) ≤ −𝑘(1 − 𝛾) and 𝛾𝑘 = exp(𝑘 log(𝛾)) ≤ exp(−𝑘(1 − 𝛾)).
Then, ∀𝜖 > 0, it suffices to let 𝑘 ≥ log(2∕((1 − 𝛾)𝜖))∕(1 − 𝛾) so that ‖‖

‖

𝑉 𝜋
𝑘 − 𝑉 𝜋‖

‖

‖∞
≤ 𝜖. In fact,

1
1 − 𝛾

log
(

2
(1 − 𝛾)𝜖

)

= 1
1 − 𝛾

(

log
(

1
1 − 𝛾

)

+ log
(2
𝜖

)

)

= 1
1 − 𝛾

(

− log(1 − 𝛾) + log
(2
𝜖

)

)

≤ 1
1 − 𝛾

(

𝛾 + log
(2
𝜖

)

)

≤ 2
1 − 𝛾

log
(2
𝜖

)

.

(127)

The third line comes from the fact that log(1−𝛾) ≤ −𝛾,∀𝛾 ∈ [0, 1). The last line comes from the fact that log(2∕𝜖) > 1,∀𝜖 ∈
(0, 1∕2). Since we have 𝐻 = ⌈

2
1−𝛾 log

(

2
𝜖

)

⌉ and �̃�∗ is an optimal policy for ̃, then we must have 𝑉 �̃�
0 (𝑠) = 𝑉 �̃�∗

𝐻 (𝑠) ≥

𝑉 �̃�∗ (𝑠) − 𝜖 = 𝑉 ∗(𝑠) − 𝜖. Therefore, we have 𝑉 ∗(𝑠) − 𝜖 ≤ 𝑉 ∗
0 (𝑠) ≤ 𝑉 ∗(𝑠) for all 𝑠 ∈ ̃ , which implies ‖‖

‖

𝑉 ∗
0 |̃ − 𝑉 ∗‖

‖

‖∞
≤ 𝜖.

Therefore, an 𝜖-approximation of 𝑉 ∗
0 will give an 2𝜖-approximation to 𝑉 ∗. Specifically, if we let 𝑉0 be an 𝜖-approximation

of 𝑉 ∗
0 , then

‖

‖

‖

𝑉0|̃ − 𝑉 ∗‖
‖

‖∞
≤ ‖

‖

‖

𝑉0|̃ − 𝑉 ∗
0 |̃

‖

‖

‖∞
+ ‖

‖

‖

𝑉 ∗
0 |̃ − 𝑉 ∗‖

‖

‖∞

≤ ‖

‖

‖

𝑉0 − 𝑉 ∗
0
‖

‖

‖∞
+ ‖

‖

‖

𝑉 ∗
0 |̃ − 𝑉 ∗‖

‖

‖∞

≤ 2𝜖.

(128)

Therefore, obtaining 2𝜖-approximation 𝑉 ∗ for ̃ with a quantum generative oracle reduced to obtaining 𝜖-approximation
value 𝑉 ∗

0 for with a quantum generative oracle. Then, it implies that the algorithm inherits the lower bound for
obtaining 2𝜖-approximation 𝑉 ∗ for ̃ with a quantum generative oracle. Note that is a time-independent MDP. Then
the quantum generative oracle is the same as ̃ defined in Theorem B.5. By Theorem B.5, we know that the lower bound
for obtaining 2𝜖-approximation 𝑉 ∗ for ̃ with a quantum generative oracle is Ω(𝑆√𝐴Γ1.5∕𝜖). This implies the quantum
lower bound for finite horizon MDP to obtain an 𝜖-optimal value function 𝑉0 is Ω(𝑆√𝐴𝐻1.5∕(𝜖 log1.5(𝜖−1))).
Note that the above content also shows that obtaining 2𝜖-approximation 𝑉 ∗ for ̃ with a classical generative oracle reduced
to obtaining 𝜖-approximation value 𝑉 ∗

0 for with a classical generative oracle. By Theorem B.5, we know that the lower
bound for obtaining 2𝜖-approximation 𝑉 ∗ for ̃ with a classical generative oracle is Ω(𝑆𝐴Γ3∕𝜖). Therefore, the classical
lower bound for finite horizon MDP to obtain an 𝜖-optimal value function 𝑉0 is Ω(𝑆𝐴𝐻3∕(𝜖2 log3(𝜖−1))).

Lemma B.7. Let and be finite sets of states and actions. Let 𝐻 > 0 be a positive integer and 𝜖 ∈ (0, 1∕2) be an error
parameter. We consider the following finite-horizon MDP ∶= (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻) where 𝑃ℎ = 𝑃 ∈ ℝ××

and 𝑟ℎ = 𝑟 ∈ [0, 1]× for all ℎ ∈ [𝐻].

• Given access to a classical generative oracle, any algorithm , which takes as an input and outputs a value function
�̂�0 such that ‖‖

‖

�̂�0 −𝑄∗
0
‖

‖

‖∞
≤ 𝜖 with probability at least 0.9, needs to call the classical generative oracle at least

Ω

(

𝑆𝐴𝐻3

𝜖2 log3(𝜖−1)

)

(129)

times on the worst case of input .

• Given access to a quantum generative oracle defined in Definition 4.1 any algorithm , which takes as an input
and outputs a value function �̂�0 such that ‖‖

‖

�̂�0 −𝑄∗
0
‖

‖

‖∞
≤ 𝜖 with probability at least 0.9, needs to call the quantum

33

Quantum Algorithms for Finite-horizon Markov Decision Processes

generative oracle at least

Ω

(

𝑆𝐴𝐻1.5

𝜖 log1.5(𝜖−1)

)

(130)

times on the worst case of input .

Proof. Following the same idea in Lemma B.6, we consider an infinite-horizon MDP ̃ = (̃ , ̃, 𝑃 , 𝑟, 𝛾) with a quantum
generative oracle, where ̃ = ⧵ {𝑠0} to be a subset of and 𝛾 ∈ [0, 1). With a slight abuse of the notations for
the infinite-horizon MDPs, we let 𝑉 ∗ ∈ ℝ and �̃�∗ ∈ ℝ× be the optimal V-value and Q-value functions of ̃.
Now, we proceed to prove that obtaining an 2𝜖-approximation value of �̃�∗ for any infinite horizon MDP ̃ can be
reduced to obtaining an 𝜖-approximation value of 𝑄∗

0 for a finite horizon MDP. We consider following finite-horizon MDP
 = (,, {𝑃ℎ}𝐻−1

ℎ=0 , {𝑟ℎ}
𝐻−1
ℎ=0 ,𝐻) where 𝑃ℎ = 𝑃 ∈ ℝ×× and 𝑟ℎ = 𝑟 ∈ ℝ×. Besides, the time horizon 𝐻 satisfies

𝐻 = ⌈2(1 − 𝛾)−1 log(𝜖−1)⌉ = Θ((1 − 𝛾)−1 log(𝜖−1)). Besides, under any action 𝑎 ∈ = ̃, there is a (1 − 𝛾) probability
for each state 𝑠 ∈ ̃ to transition to 𝑠0 and 𝛾 probability to follow the original transitions in ̃. However, when the agent is
in 𝑠0, it can only transition to itself with probability 1, no matter which action 𝑎 ∈ it takes. Hence, 𝑠0 is an absorbing state
in . Overall, we have the following definitions for the transition probability kernel 𝑃 in .

∀𝑠, 𝑠′ ∈ ̃ , 𝑎 ∈ ,𝑃 (𝑠′|𝑠, 𝑎) = 𝛾𝑃 (𝑠′|𝑠, 𝑎), 𝑃 (𝑠0|𝑠, 𝑎) = (1 − 𝛾), (131)
𝑃 (𝑠′|𝑠0, 𝑎) = 0, 𝑃 (𝑠0|𝑠0, 𝑎) = 1. (132)

Besides, we define 𝑟(𝑠0, 𝑎) = 0, 𝑟(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) ∈ [0, 1] for all 𝑠 ∈ ̃ and 𝑎 ∈ .
Now, we proceed to prove that ‖‖

‖

𝑄∗
0|̃× − �̃�∗‖

‖

‖∞
≤ 𝜖, i.e., |𝑄∗

0(𝑠, 𝑎) − �̃�
∗(𝑠, 𝑎)| ≤ 𝜖 for all 𝑠 ∈ ̃ and 𝑎 ∈ ̃ = . First,

we note that 𝑄∗
𝐻−1 = 𝑟(𝑠, 𝑎) ≤ �̃�∗ by the definition of �̃�∗. In Lemma B.6, we see that it holds that 𝑉 ∗

ℎ (𝑠) ≤ 𝑉 ∗(𝑠) for all
ℎ ∈ [𝐻] and 𝑠 ∈ ̃ , and 𝑉 ∗

ℎ+1(𝑠0) = 0 for all ℎ ∈ [𝐻]. Therefore, we have,

𝑄∗
ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +

∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

ℎ+1(𝑠
′)

= 𝑟(𝑠, 𝑎) +
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

ℎ+1(𝑠
′) + 𝑃 (𝑠0|𝑠, 𝑎)𝑉 ∗

ℎ+1(𝑠0)

= 𝑟(𝑠, 𝑎) +
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

ℎ+1(𝑠
′)

= 𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗

ℎ+1(𝑠
′)

≤ 𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ∗(𝑠′)

= �̃�∗(𝑠, 𝑎),

(133)

for all ℎ ∈ [𝐻 − 1] and (𝑠, 𝑎) ∈ ̃ ×. In particular, 𝑄∗
0(𝑠, 𝑎) ≤ �̃�∗(𝑠, 𝑎) for all 𝑠 ∈ ̃ and 𝑎 ∈ . Let �̃�∗ ∈ be an

optimal policy for the infinite-horizon MDP ̃. However, �̃� ∈ ×[𝐻], where �̃�(⋅, ℎ) = �̃�∗ for all ℎ ∈ [𝐻], may not be
an optimal policy for finite-horizon MDP . Then we have 𝑄�̃�0 (𝑠, 𝑎) ≤ 𝑄∗

0(𝑠, 𝑎) for all 𝑠 ∈ and 𝑎 ∈ . In fact, for any
𝑠 ∈ ̃ , we have

𝑄�̃�0 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +
∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)𝑟

(

𝑠, �̃�∗(𝑠)
)

+⋯ +
∑

𝑠′∈
𝑃𝐻

(

𝑠′|𝑠, �̃�∗(𝑠)
)

𝑟
(

𝑠, �̃�∗(𝑠)
)

= 𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈̃
𝑃 (𝑠′|𝑠, 𝑎)𝑟

(

𝑠, �̃�∗(𝑠)
)

+⋯ + 𝛾𝐻
∑

𝑠′∈̃
𝑃𝐻 (𝑠′|𝑠, 𝑎)𝑟

(

𝑠, �̃�∗(𝑠)
)

= �̃��̃�
∗

𝐻 ,

(134)

where �̃��̃�∗𝐻 is the Q value of the infinite-horizon MDP ̃ induced by the policy �̃�∗ over𝐻 iterations. Note that for any policy
�̃� for the infinite horizon MDP ̃, ‖‖

‖

�̃�𝜋𝑘 − �̃�
𝜋‖
‖

‖∞
≤ 𝛾𝑘 ‖‖

‖

�̃�𝜋0 − �̃�𝜋‖‖
‖∞

≤ 2 exp(−(1 − 𝛾)𝑘)∕(1 − 𝛾). Then, ∀𝜖, it suffices to

34

Quantum Algorithms for Finite-horizon Markov Decision Processes

let 𝑘 ≥ log(2∕((1 − 𝛾)𝜖))∕(1 − 𝛾) so that ‖‖
‖

�̃�𝜋𝑘 − �̃�
𝜋‖
‖

‖∞
≤ 𝜖. In fact,

1
1 − 𝛾

log
(

2
(1 − 𝛾)𝜖

)

= 1
1 − 𝛾

(

log
(

1
1 − 𝛾

)

+ log
(2
𝜖

)

)

= 1
1 − 𝛾

(

− log(1 − 𝛾) + log
(2
𝜖

)

)

≤ 1
1 − 𝛾

(

𝛾 + log
(2
𝜖

)

)

≤ 2 1
1 − 𝛾

log
(2
𝜖

)

.

(135)

The third line comes from the fact that log(1−𝛾) ≤ −𝛾,∀𝛾 ∈ [0, 1). The last line comes from the fact that log(2∕𝜖) > 1,∀𝜖 ∈
(0, 1∕2). Since 𝐻 = ⌈2 1

1−𝛾 log
(

2
𝜖

)

⌉ and �̃�∗ is an optimal policy for ̃, then we must have �̃��̃�∗𝐻 (𝑠, 𝑎) ≥ �̃��̃�∗ (𝑠, 𝑎) − 𝜖 =

�̃�∗(𝑠, 𝑎)−𝜖. Therefore, we have �̃�∗(𝑠, 𝑎)−𝜖 ≤ 𝑄∗
0(𝑠, 𝑎) ≤ �̃�∗(𝑠, 𝑎) for all 𝑠 ∈ ̃ , 𝑎 ∈ , which implies ‖‖

‖

�̂�∗
0|̃× − �̃�∗‖

‖

‖∞
≤

𝜖. Therefore, an 𝜖-approximation of𝑄∗
0 will give an 2𝜖-approximation to �̃�∗. Specifically, if we let �̂�0 be an 𝜖-approximation

of 𝑄∗
0, then

‖

‖

‖

�̂�0|̃× − �̃�∗‖
‖

‖∞
≤ ‖

‖

‖

�̂�0|̃× −𝑄∗
0|̃×

‖

‖

‖∞
+ ‖

‖

‖

𝑄∗
0|̃× − �̃�∗‖

‖

‖∞

≤ ‖

‖

‖

�̂�0 −𝑄∗
0
‖

‖

‖∞
+ ‖

‖

‖

𝑄∗
0|̃× − �̃�∗‖

‖

‖∞

≤ 2𝜖.

(136)

Therefore, obtaining 2𝜖-approximation �̃�∗ for ̃ with a quantum generative oracle reduced to obtaining 𝜖-approximation
value �̂�∗

0 for with a quantum generative oracle. Then, it implies that the algorithm inherits the lower bound for
obtaining 2𝜖-approximation �̃�∗ for ̃ with a quantum generative oracle. Note that is a time-independent MDP. Then
the quantum generative oracle is the same as ̃ defined in Theorem B.5. By Theorem B.5, we know that the lower bound
for obtaining 2𝜖-approximation �̃�∗ for ̃ with a quantum generative oracle is Ω(𝑆𝐴Γ1.5∕𝜖). This implies the lower bound
for obtaining 𝜖-optimal Q value function �̂�0 of finite horizon MDP is Ω(𝑆𝐴𝐻1.5∕(𝜖 log1.5(𝜖−1))).
Note that the above content also implies that obtaining 2𝜖-approximation �̃�∗ for ̃ with a classical generative oracle
reduced to obtaining 𝜖-approximation value �̂�∗

0 for with a classical generative oracle. By Theorem B.5, we know that the
lower bound for obtaining 2𝜖-approximation �̃�∗ for ̃ with a classical generative oracle is Ω(𝑆𝐴Γ3∕𝜖). Therefore, the
classical lower bound for finite horizon MDP is Ω(𝑆𝐴𝐻3∕(𝜖2 log3(𝜖−1))).

B.3.3. LOWER BOUNDS FOR FINITE-HORIZON MDPS (PROOF OF THEOREM 4.7)
Proof. Since time-independent and finite-horizon MDP is a special case of time-dependent and finite-horizon MDP, we
know that the lower bound of obtaining an 𝜖-approximation 𝑉0 of 𝑉 ∗

0 for time-dependent and finite-horizon MDP
with a classical or quantum generative oracle inherits the corresponding lower bound in Lemma B.6. Besides, obtaining
𝜖-approximations 𝑉0 of 𝑉 ∗

0 is a sub-task of obtaining 𝜖-approximations 𝑉ℎ of 𝑉 ∗
ℎ for all ℎ ∈ [𝐻]. Therefore, the lower

bound of obtaining 𝜖-approximations 𝑉ℎ of 𝑉 ∗
ℎ for all ℎ ∈ [𝐻] for time-dependent and finite-horizon MDP with access

to a classical or quantum generative oracle inherits the lower bound of obtaining 𝜖-approximations 𝑉0 of 𝑉 ∗
0 with a classical

or quantum generative oracle. Therefore, algorithm has the desired classical and quantum lower bounds for obtaining
𝜖-optimal V value functions {𝑉ℎ}𝐻−1

ℎ=0 . With Lemma B.7, similar idea also applies to obtain the classical and quantum lower
bound of obtaining 𝜖-optimal Q value functions {�̂�ℎ}𝐻−1

ℎ=0 .
Suppose can output an 𝜖-optimal policy �̂� for a finite horizon and time-dependent MDP , then the corresponding
V-values {𝑉ℎ}𝐻−1

ℎ=0 ∶= {𝑉 �̂�
ℎ }

𝐻−1
ℎ=0 induced by �̂� are 𝜖-optimal. Therefore, has the desired classical and quantum lower

bounds for obtaining the 𝜖-optimal policy �̂� by inheriting the corresponding lower bound for obtaining 𝜖-optimal V-value
functions {𝑉ℎ}𝐻−1

ℎ=0 .

35

